\(x\), biết :

a) \(\left(x^4\right)^2=\dfrac{x^{12}}{x^5...">

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 6 2017

a) \(\left(x^4\right)^2=\dfrac{x^{12}}{x^5}\\ x^8=x^7\\ \Rightarrow x=1;x=-1\)

b)\(x^{10}=25.x^8\\ x^2=25\\ \Rightarrow\left\{{}\begin{matrix}x=5\\x=-5\end{matrix}\right.\)

7 tháng 10 2017

a) \(\left(x^4\right)^2=\dfrac{x^{12}}{x^5}\)

\(\Rightarrow x^8=x^7\)

\(\Rightarrow x^8-x^7=0\)

\(\Rightarrow x^7.x-x^7=0\)

\(\Rightarrow x^7\left(x-1\right)=0\)

\(\Rightarrow x-1=0\) (vì x^7 \(\ne\)0)

\(\Rightarrow\) x=1

b) x^10=25x^8

\(\Rightarrow x^8.x^2-25x^8=0\)

\(\Rightarrow x^8\left(x^2-25\right)=0\)

\(\Rightarrow x^8=0\) hoặc \(x^2-25=0\)

1) x^8=0

\(\Rightarrow\) x=0(1)

2) x^2 -25=0

x^2=0+25

x^2=25

x^2=5^2 hay x^2=(-5)^2

Suy ra x=5 hoặc x=-5 (2)

Từ (1) và (2)\(\Rightarrow\)x\(\in\left\{0;5;-5\right\}\)

EM KO CHÉP ĐÁP ÁN NHÉ

12 tháng 7 2016

a) \(\left(x^4\right)^2=\frac{x^{12}}{x^5}\left(x\ne0\right)\)

\(\Rightarrow x^8=x^7\)

\(\Rightarrow x^8-x^7=0\)

\(\Rightarrow x^7.\left(x-1\right)=0\)

\(\Rightarrow x-1=0\) ( vì \(x^7\ne0\) )

Vậy \(x=1\)

b ) \(x^{10}=25x^8\)

\(\Rightarrow x^{10}-25x^8=0\)

\(\Rightarrow x^8.\left(x^2-25\right)=0\)

\(\Leftrightarrow x^8=0\) hoặc \(x^2-25=0\)

Do đó \(x=0\) hoặc \(x=5\) hoặc \(x=-5\)

Vậy \(x\in\left\{0;5;-5\right\}\)

12 tháng 7 2016

a.

\(\left(x^4\right)^2=\frac{x^{12}}{x^5}\)

\(x^8=x^7\)

\(x\ne0\)

\(\Rightarrow x=1\)

b.

\(x^{10}=25\times x^8\)

\(\frac{x^{10}}{x^8}=25\)

\(x^2=\left(\pm5\right)^2\)

\(x=\pm5\)

Vậy x = 5 hoặc x = -5

Chúc bạn học tốtok

 

1 tháng 7 2017

X bằng căn bậc 3 của 25

1 tháng 7 2017

X^8=(X^4)^2 và (X^4)^2=X^12/X^5 x#0

Nên X^10=25.(X^4)^2=25.X^12/X^5

=> X^10.X^5/X^12=25

X^3=25

X bằng căn bậc 3 của 25

1 tháng 7 2017

Giải:

a) Ta có:

\(\left(x^4\right)^2=\frac{x^{12}}{x^5}\left(x\ne0\right)\Leftrightarrow x^8=x^7\)

\(\Leftrightarrow x^8-x^7=0\Leftrightarrow x^7\left(x-1\right)=0\)

\(\Leftrightarrow x-1=0\left(x^7\ne0\right)\Leftrightarrow x=1\)

Vậy \(x=1\)

b) Ta có:

\(x^{10}=25x^8\Leftrightarrow x^{10}-25x^8=0\)

\(\Leftrightarrow x^8\left(x^2-25\right)=0\Leftrightarrow\) \(\left[\begin{array}{}x^8=0\\x^2-25=0\end{array}\right.\)

\(\Leftrightarrow\) \(\left[\begin{array}{}x=0\\x=5\\x=-5\end{array}\right.\) Vậy...

6 tháng 7 2017

cảm ơn bn

22 tháng 7 2018

c. \(^{ }\left(2x+3\right)^2=\dfrac{9}{121}\)

=> \(\left(2x+3\right)^2=\left(\dfrac{3}{11}\right)^2\)

=> 2x +3 = \(\dfrac{3}{11}\) hoặc 2x+3 = \(\dfrac{-3}{11}\)

=> x= \(\dfrac{-15}{11}\) hoặc x = \(\dfrac{-18}{11}\)

22 tháng 7 2018

d. \(\left(2x-1\right)^3=\dfrac{-8}{27}\)

=> \(\left(2x-1\right)^3=\left(\dfrac{-2}{3}\right)^3\)

=> 2x-1 = \(\dfrac{-2}{3}\)

=> x= \(\dfrac{1}{6}\)

a: TH1: x>=0

=>x+x=1/3

=>x=1/6(nhận)

TH2: x<0

Pt sẽ là -x+x=1/3

=>0=1/3(loại)

b: \(\Leftrightarrow\left\{{}\begin{matrix}x>=0\\x^2-x-2=0\end{matrix}\right.\Leftrightarrow x=2\)

c: \(\Leftrightarrow\dfrac{1}{x-1}-\dfrac{1}{x-3}+\dfrac{1}{x-3}-\dfrac{1}{x-8}+\dfrac{1}{x-8}-\dfrac{1}{x-20}-\dfrac{1}{x-20}=\dfrac{-3}{4}\)

\(\Leftrightarrow\dfrac{1}{x-1}-\dfrac{2}{x-20}=\dfrac{-3}{4}\)

\(\Leftrightarrow\dfrac{x-20-2x+2}{\left(x-1\right)\left(x-20\right)}=\dfrac{-3}{4}\)

\(\Leftrightarrow-3\left(x^2-21x+20\right)=4\left(-x-18\right)\)

\(\Leftrightarrow3x^2-63x+60=4x+72\)

=>3x^2-67x-12=0

hay \(x\in\left\{22.51;-0.18\right\}\)

31 tháng 8 2020

Bài 1 : \(M=\frac{8^{20}+4^{20}}{4^{25}+64^5}=\frac{\left(2^3\right)^{20}+\left(2^2\right)^{20}}{\left(2^2\right)^{25}+\left(2^6\right)^5}=\frac{2^{60}+2^{40}}{2^{50}+2^{30}}=\frac{2^{40}\left(2^{20}+1\right)}{2^{30}\left(2^{20}+1\right)}=2^{10}=1024\)

Bài 2 : a) \(\left(x^4\right)^2=\frac{x^{12}}{x^5}\)=> \(x^8=x^7\)

=> \(x^8-x^7=0\)

=> \(x^7\left(x-1\right)=0\)

=> \(x-1=0\Rightarrow x=1\)(vì x7 = 0 => x = 0 mà x \(\ne\)0 nên loại)

b) \(x^{10}-25x^8=0\)

=> \(x^8\left(x^2-25\right)=0\)

=> x8 = 0 hoặc x2 - 25 = 0

=> x = 0 hoặc x2 = 25

=> x = 0 hoặc x = \(\pm\)5

Bài 3 : a) \(\left(2x+3\right)^2=\frac{9}{121}=\left(\pm\frac{3}{11}\right)^2\)

=> \(\orbr{\begin{cases}2x+3=\frac{3}{11}\\2x+3=-\frac{3}{11}\end{cases}}\Rightarrow\orbr{\begin{cases}x=-\frac{15}{11}\\x=-\frac{18}{11}\end{cases}}\)

b) \(\left(3x-1\right)^3=-\frac{8}{27}=\left(-\frac{2}{3}\right)^3\)

=> 3x - 1 = -2/3

=> 3x = 1/3

=> x = 1/3 : 3 = 1/9

31 tháng 8 2020

1) Ta có \(M=\frac{8^{20}+4^{20}}{4^{25}+64^5}=\frac{\left(2^3\right)^{20}+\left(2^2\right)^{20}}{\left(2^2\right)^{25}+\left(2^6\right)^5}=\frac{2^{60}+2^{40}}{2^{50}+2^{30}}=\frac{2^{40}\left(2^{20}+1\right)}{2^{30}\left(2^{30}+1\right)}=2^{10}=1024\)

2) a) \(\left(x^4\right)^2=\frac{x^{12}}{x^5}\)

=> x8 = x7

=> x8 - x7 = 0

=> x7(x - 1) = 0

=> \(\orbr{\begin{cases}x^7=0\\x-1=0\end{cases}}\Rightarrow\orbr{\begin{cases}x=0\\x=1\end{cases}}\)

Vậy x \(\in\left\{0;1\right\}\)

b) x10 = 25x8

=> x10 - 25x8 = 0

=> x8(x2 - 25) = 0

=> \(\orbr{\begin{cases}x^8=0\\x^2-25=0\end{cases}}\Rightarrow\orbr{\begin{cases}x=0\\x=\pm5\end{cases}}\)

Vậy \(x\in\left\{0;5;-5\right\}\)

3) \(\left(2x+3\right)^2=\frac{9}{121}\)

=> \(\left(2x+3\right)^2=\left(\frac{3}{11}\right)^2\)

=> \(\orbr{\begin{cases}2x+3=\frac{3}{11}\\2x+3=-\frac{3}{11}\end{cases}}\Rightarrow\orbr{\begin{cases}2x=\frac{-30}{11}\\2x=-\frac{36}{11}\end{cases}}\Rightarrow\orbr{\begin{cases}x=-\frac{15}{11}\\x=-\frac{18}{11}\end{cases}}\)

Vậy \(x\in\left\{-\frac{15}{11};-\frac{18}{11}\right\}\)

b) \(\left(3x-1\right)^3=-\frac{8}{27}\)

=> \(\left(3x-1\right)^3=\left(-\frac{2}{3}\right)^3\)

=> \(3x-1=-\frac{2}{3}\)

=> \(3x=\frac{1}{3}\)

=> \(x=\frac{1}{9}\)

Vậy \(x=\frac{1}{9}\)

25 tháng 6 2017

b, \(\dfrac{3}{\left(x+2\right)\left(x+5\right)}+\dfrac{5}{\left(x+5\right)\left(x+10\right)}+\dfrac{7}{\left(x+10\right)\left(x+17\right)}=\dfrac{x}{\left(x+2\right)\left(x+17\right)}\)

\(\Rightarrow\dfrac{1}{x+2}-\dfrac{1}{x+5}+\dfrac{1}{x+5}-\dfrac{1}{x+10}+\dfrac{1}{x+10}-\dfrac{1}{x+17}=\dfrac{x}{\left(x+2\right)\left(x+17\right)}\)

\(\Rightarrow\dfrac{1}{x+2}-\dfrac{1}{x+17}=\dfrac{x}{\left(x+2\right)\left(x+17\right)}\)

\(\Rightarrow\dfrac{x+17-x+2}{\left(x+2\right)\left(x+17\right)}=\dfrac{x}{\left(x+2\right)\left(x+17\right)}\)

\(\Rightarrow x=19\)

Chúc bạn học tốt!!!

25 tháng 6 2017

a, \(\dfrac{x+1}{5}+\dfrac{x+3}{4}=\dfrac{x+5}{3}+\dfrac{x+7}{2}\)

\(\Rightarrow\dfrac{x+1}{5}+2+\dfrac{x+3}{4}+2=\dfrac{x+5}{3}+2+\dfrac{x+7}{2}+2\)

\(\Rightarrow\dfrac{x+11}{5}+\dfrac{x+11}{4}-\dfrac{x+11}{3}-\dfrac{x+11}{2}=0\)

\(\Rightarrow\left(x+11\right)\left(\dfrac{1}{5}+\dfrac{1}{4}-\dfrac{1}{3}-\dfrac{1}{2}\right)=0\)

\(\Rightarrow x+11=0\Rightarrow x=-11\)

Vậy x = -11

b, \(\dfrac{3}{\left(x+2\right)\left(x+5\right)}+\dfrac{5}{\left(x+5\right)\left(x+10\right)}+\dfrac{7}{\left(x+10\right)\left(x+17\right)}=\dfrac{x}{\left(x+2\right)\left(x+17\right)}\)

\(\Rightarrow\dfrac{1}{x+2}-\dfrac{1}{x+5}+\dfrac{1}{x+5}-\dfrac{1}{x+10}+\dfrac{1}{x+10}-\dfrac{1}{x+17}=\dfrac{x}{\left(x+2\right)\left(x+17\right)}\)

\(\Rightarrow\dfrac{1}{x+2}-\dfrac{1}{x+17}=\dfrac{x}{\left(x+2\right)\left(x+17\right)}\)

\(\Rightarrow\dfrac{x+17-x-2}{\left(x+2\right)\left(x+17\right)}=\dfrac{x}{\left(x+2\right)\left(x+17\right)}\)

\(\Rightarrow\dfrac{15}{\left(x+2\right)\left(x+17\right)}=\dfrac{x}{\left(x+2\right)\left(x+17\right)}\)

\(\Rightarrow x=15\)

Vậy x = 15

13 tháng 10 2017

Giải:

a) \(x+\left(-\dfrac{31}{12}\right)^2=\left(\dfrac{49}{12}\right)^2-x=y\)

\(\Leftrightarrow x+\left(-\dfrac{31}{12}\right)^2=\left(\dfrac{49}{12}\right)^2-x\)

\(\Leftrightarrow x+\left(-\dfrac{31}{12}\right)^2-\left(\dfrac{49}{12}\right)^2+x=0\)

\(\Leftrightarrow2x+\left(-\dfrac{31}{12}\right)^2-\left(\dfrac{49}{12}\right)^2=0\)

\(\Leftrightarrow2x+\dfrac{\left(-31\right)^2}{12^2}-\dfrac{49^2}{12^2}=0\)

\(\Leftrightarrow2x+\dfrac{\left(-31\right)^2-49^2}{144}=0\)

\(\Leftrightarrow2x+\dfrac{961-2401}{144}=0\)

\(\Leftrightarrow2x+\dfrac{-1440}{144}=0\)

\(\Leftrightarrow2x+\left(-10\right)=0\)

\(\Leftrightarrow2x=10\)

\(\Leftrightarrow x=5\)

\(x+\left(-\dfrac{31}{12}\right)^2=y^2\)

\(\Leftrightarrow5+\dfrac{961}{144}=y^2\)

\(\Leftrightarrow y^2=\dfrac{1681}{144}\)

\(\Leftrightarrow y=\pm\dfrac{41}{12}\)

Vậy ...

b) \(\left(\dfrac{1}{2}x-5\right)^{20}+\left(y^2-\dfrac{1}{4}\right)^{10}\le0\)

\(\left(\dfrac{1}{2}x-5\right)^{20}\ge0;\forall x\)

\(\left(y^2-\dfrac{1}{4}\right)^{10}\ge0;\forall y\)

\(\Rightarrow\left(\dfrac{1}{2}x-5\right)^{20}+\left(y^2-\dfrac{1}{4}\right)^{10}\le0\)

\(\Leftrightarrow\left(\dfrac{1}{2}x-5\right)^{20}+\left(y^2-\dfrac{1}{4}\right)^{10}=0\)

\(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{1}{2}x-5=0\\y^2-\dfrac{1}{4}=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\dfrac{1}{2}x=5\\y^2=\dfrac{1}{4}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=10\\y=\pm\dfrac{1}{2}\end{matrix}\right.\)

Vậy ...

Chúc bạn học tốt!