\(\frac{2x+3}{15}\)=\(\frac{7}{5}\)b) 
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 8 2020

a. \(\frac{2x+3}{15}=\frac{7}{5}\)

\(\Leftrightarrow5\left(2x+3\right)=15.7\)

\(\Leftrightarrow10x+15=105\)

\(\Leftrightarrow10x=90\)

\(\Leftrightarrow x=9\)

b. \(\frac{x-2}{9}=\frac{8}{3}\)

\(\Leftrightarrow3\left(x-2\right)=9.8\)

\(\Leftrightarrow3x-6=72\)

\(\Leftrightarrow3x=78\)

\(\Leftrightarrow x=26\)

c. \(\frac{-8}{x}=\frac{-x}{18}\)

\(\Leftrightarrow-x^2=-144\)

\(\Leftrightarrow x^2=12^2\)

\(\Leftrightarrow\orbr{\begin{cases}x=12\\x=-12\end{cases}}\)

Mấy câu kia tương tự

25 tháng 8 2020

d, \(\frac{2x+3}{6}=\frac{x-2}{5}\Leftrightarrow10x+15=6x-12\Leftrightarrow4x=-27\Leftrightarrow x=-\frac{27}{4}\)

e, \(\frac{x+1}{22}=\frac{6}{x}\Leftrightarrow x^2+x=132\Leftrightarrow x^2+x-132=0\Leftrightarrow\left(x-11\right)\left(x+12\right)=0\Leftrightarrow\orbr{\begin{cases}x=11\\x=-12\end{cases}}\)

f, \(\frac{2x-1}{2}=\frac{5}{x}\Leftrightarrow2x^2-x=10\Leftrightarrow2x^2-x-10=0\Leftrightarrow\left(x+2\right)\left(2x-5\right)=0\Leftrightarrow\orbr{\begin{cases}x=-2\\x=\frac{5}{2}\end{cases}}\)

g, \(\left(2x-1\right)\left(2x+1\right)=63\Leftrightarrow4x^2+2x-2x-1=63\Leftrightarrow4x^2-64=0\)

\(\Leftrightarrow x^2=16\Leftrightarrow x=\pm4\)

h, \(\frac{10x+5}{6}=\frac{5}{x+1}\Leftrightarrow\left(10x+5\right)\left(x+1\right)=30\Leftrightarrow10x^2+10x+5x+5=30\)

\(\Leftrightarrow10x^2+15x-25=0\Leftrightarrow5\left(2x+5\right)\left(x-1\right)=0\Leftrightarrow\orbr{\begin{cases}x=-\frac{5}{2}\\x=1\end{cases}}\)

5 tháng 6 2019

1.b) \(\left(\left|x\right|-3\right)\left(x^2+4\right)< 0\)

\(\Rightarrow\hept{\begin{cases}\left|x\right|-3\\x^2+4\end{cases}}\) trái dấu

\(TH1:\hept{\begin{cases}\left|x\right|-3< 0\\x^2+4>0\end{cases}}\Leftrightarrow\hept{\begin{cases}\left|x\right|< 3\\x^2>-4\end{cases}}\Leftrightarrow x\in\left\{0;\pm1;\pm2\right\}\)

\(TH1:\hept{\begin{cases}\left|x\right|-3>0\\x^2+4< 0\end{cases}}\Leftrightarrow\hept{\begin{cases}\left|x\right|>3\\x^2< -4\end{cases}}\Leftrightarrow x\in\left\{\varnothing\right\}\)

Vậy \(x\in\left\{0;\pm1;\pm2\right\}\)

5 tháng 6 2019

Bài 1b) có thể giải gọn hơn nhuư thế này

18 tháng 7 2018

a,x-2/5=5/7

x=5/7+2/5

x=39/35

b,-2/5.x=4/15

x=4/15:-2/5

x=-2/3

18 tháng 7 2018

a) \(x-\frac{2}{5}=\frac{5}{7}\)

\(x=\frac{2}{5}+\frac{5}{7}\)

\(x=\frac{14}{35}+\frac{25}{35}=\frac{39}{35}\)

b)

\(\frac{-2}{5}x=\frac{4}{15}\)

\(x=\frac{4}{15}:-\frac{2}{5}\)

\(x=\frac{4}{15}\cdot-\frac{5}{2}=-\frac{2}{3}\)

c) \(2x\left(x-\frac{1}{7}\right)=2x^2-\frac{2x}{7}\)

d) \(\frac{1}{2}+\frac{3}{4}x=\frac{1}{4}\)

\(\frac{3}{4}x=\frac{1}{4}-\frac{1}{2}\)

\(\frac{3}{4}x=-\frac{1}{4}\)

\(x=-\frac{1}{4}\cdot\frac{4}{3}=-\frac{1}{3}\)

f) \(\frac{11}{12}-\left(\frac{2}{5}+x\right)=\frac{2}{5}\)

\(\frac{2}{5}+x=\frac{11}{12}-\frac{2}{5}=\frac{31}{60}\)

\(x=\frac{31}{60}-\frac{2}{5}=\frac{7}{60}\)

2: =>2x-1/4=5/6-1/2x

=>5/2x=5/6+1/4=13/12

=>x=13/30

3: =>3x-5/6=2/3-1/2x

=>3,5x=2/3+5/6=4/6+5/6=9/6=3,2

hay x=32/35

Bài 2:

a) \(x:\left(\frac{2}{9}-\frac{1}{5}\right)=\frac{8}{16}\)

\(\Leftrightarrow x:\frac{1}{45}=\frac{1}{2}\)

\(\Leftrightarrow x=\frac{1}{2}:\frac{1}{45}=\frac{45}{2}\)

b) \(\left(2x-1\right).\left(2x+3\right)=0\)

\(\)\(\Leftrightarrow\left[{}\begin{matrix}2x-1=0\\2x+3=0\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}2x=1\\2x=-3\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=\frac{1}{2}\\x=-\frac{3}{2}\end{matrix}\right.\)

c) \(\frac{4-3x}{2x+5}=0\Leftrightarrow4-3x=0\)

\(\Leftrightarrow3x=4\Rightarrow x=\frac{4}{3}\)

d) \(\left(x-2\right).\left(x+\frac{2}{3}\right)\ge0\)

\(\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x-2>0\\x+\frac{3}{2}>0\end{matrix}\right.\\\left\{{}\begin{matrix}x-2< 0\\x+\frac{3}{2}< 0\end{matrix}\right.\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x>2\\x>-\frac{3}{2}\end{matrix}\right.\\\left\{{}\begin{matrix}x< 2\\x< -\frac{3}{2}\end{matrix}\right.\end{matrix}\right.\)

28 tháng 7 2019

Bài 2:

a) \(x:\left(\frac{2}{9}-\frac{1}{5}\right)=\frac{8}{16}\)

=> \(x:\frac{1}{45}=\frac{1}{2}\)

=> \(x=\frac{1}{2}.\frac{1}{45}\)

=> \(x=\frac{1}{90}\)

Vậy \(x=\frac{1}{90}.\)

b) \(\left(2x-1\right).\left(2x+3\right)=0\)

=> \(\left\{{}\begin{matrix}2x-1=0\\2x+3=0\end{matrix}\right.\) => \(\left\{{}\begin{matrix}2x=0+1=1\\2x=0-3=-3\end{matrix}\right.\) => \(\left\{{}\begin{matrix}x=1:2\\x=\left(-3\right):2\end{matrix}\right.\)

=> \(\left\{{}\begin{matrix}x=\frac{1}{2}\\x=-\frac{3}{2}\end{matrix}\right.\)

Vậy \(x\in\left\{\frac{1}{2};-\frac{3}{2}\right\}.\)

Mình chỉ làm được thế thôi nhé, mong bạn thông cảm.

Chúc bạn học tốt!

18 tháng 6 2019

#)Giải :

a) Ta có : \(\frac{x}{3}=\frac{y}{4};\frac{y}{5}=\frac{z}{7}\Rightarrow\frac{x}{15}=\frac{y}{20};\frac{y}{20}=\frac{z}{28}\Rightarrow\frac{x}{15}=\frac{y}{20}=\frac{z}{28}\)

Áp dụng tính chất dãy tỉ số bằng nhau :

\(\frac{x}{15}=\frac{y}{20}=\frac{z}{28}=\frac{2x+3y-z}{30+60-28}=\frac{186}{62}=3\)

\(\hept{\begin{cases}\frac{x}{15}=3\\\frac{y}{20}=3\\\frac{z}{28}=3\end{cases}\Rightarrow\hept{\begin{cases}x=45\\y=60\\z=84\end{cases}}}\)

Vậy x = 45; y = 60; z = 84

b) Áp dụng tính chất dãy tỉ số bằng nhau :

\(\frac{y+z+1}{x}=\frac{x+z+2}{y}=\frac{x+y-3}{z}=\frac{\left(y+z+1\right)+\left(x+z+2\right)+\left(x+y-3\right)}{x+y+z}=\frac{2\left(x+y+z\right)}{x+y+z}=2\)

\(\Rightarrow\frac{y+z+1}{x}=\frac{x+z+2}{y}=\frac{x+y-3}{z}=\frac{1}{x+y+z}=2\)

\(\Rightarrow\hept{\begin{cases}y+z+1=2x\left(1\right)\\x+z+2=2y\left(2\right)\end{cases}}\)

\(\Rightarrow\hept{\begin{cases}x+y-3=2z\left(3\right)\\x+y+z=\frac{1}{2}\left(4\right)\end{cases}}\)

\(\left(+\right)x+y+z=\frac{1}{2}\Rightarrow y+z=\frac{1}{2}-z\)

Thay (1) vào (+) ta được :

\(\frac{1}{2}-x+1=2x\Rightarrow\frac{3}{2}=3x\Rightarrow x=\frac{1}{2}\)

\(\left(+_2\right)x+y+z=\frac{1}{2}\Rightarrow x+z=\frac{1}{2}-y\)

Thay (2) và (+2) ta được :

\(\frac{1}{2}-y+2=2y\Rightarrow\frac{5}{2}=3y\Rightarrow y=\frac{5}{6}\)

\(\left(+_3\right)x+y+z=\frac{1}{2}+\frac{5}{6}+z=\frac{1}{2}\Rightarrow\frac{4}{3}+z=\frac{1}{2}\Rightarrow z=\frac{-5}{6}\)

Vậy \(\hept{\begin{cases}x=\frac{1}{2}\\y=\frac{5}{6}\\z=\frac{-5}{6}\end{cases}}\)

18 tháng 6 2019

\(\frac{x}{2}=\frac{y}{3}=\frac{z}{5}=k\)

\(\Rightarrow x=2k;y=3k;z=5k\)

\(\Rightarrow xyz=2k\cdot3k\cdot5k=30k^3\)

Mà \(xyz=810\Rightarrow30k^3=810\)

\(\Rightarrow k^3=27\)

\(\Rightarrow k=3\)

Thay vào tìm x,,z.

8 tháng 10 2019

a, \(-\frac{5}{7}-\left(\frac{1}{2}-x\right)=-\frac{11}{4}\)

\(\frac{1}{2}-x=\frac{57}{28}\)

\(x=-\frac{43}{28}\)

b, \(\left(2x-1\right)^2-5=20\)

\(\Rightarrow\left(2x-1\right)^2=25\)

\(\Rightarrow2x-1=\pm5\)

\(\Rightarrow\left[{}\begin{matrix}2x-1=5\\2x-1=-5\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}2x=6\\2x=-4\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}x=3\\x=-2\end{matrix}\right.\)