Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1.Tính
a.\(\dfrac{7}{23}\left[(-\dfrac{8}{6})-\dfrac{45}{18}\right]=\dfrac{7}{23}.-\dfrac{12}{6}=-\dfrac{7}{6}\)
b.\(\dfrac{1}{5}\div\dfrac{1}{10}-\dfrac{1}{3}(\dfrac{6}{5}-\dfrac{9}{4})=2-(-\dfrac{7}{20})=\dfrac{47}{20}\)
c.\(\dfrac{3}{5}.(-\dfrac{8}{3})-\dfrac{3}{5}\div(-6)=-\dfrac{3}{2}\)
d.\(\dfrac{1}{2}.(\dfrac{4}{3}+\dfrac{2}{5})-\dfrac{3}{4}.(\dfrac{8}{9}+\dfrac{16}{3})=-\dfrac{19}{5}\)
e.\(\dfrac{6}{7}\div(\dfrac{3}{26}-\dfrac{3}{13})+\dfrac{6}{7}.(\dfrac{1}{10}-\dfrac{8}{5})=-\dfrac{61}{7}\)
Bài 2
a.\(1^2_5x+\dfrac{3}{7}=\dfrac{4}{5}\)
\(x=\dfrac{13}{49}\)
b.\(\left|x-1,5\right|=2\)
Xảy ra 2 trường hợp
TH1
\(x-1,5=2\)
\(x=3,5\)
TH2
\(x-1,5=-2\)
\(x=-0,5\)
Vậy \(x=3,5\) hoặc \(x=-0,5\) .
Ngại làm quá trời ơi,lần sau bn tách ra nhá làm vậy mỏi tay quá.
1: =>1/3:x=3/5-2/3=9/15-10/15=-1/15
=>x=-1/3:1/15=5
2: \(\Leftrightarrow x\cdot\dfrac{2}{3}-3=\dfrac{2}{5}\cdot\left(-10\right)=-4\)
=>x*2/3=-1
=>x=-3/2
3: \(\Leftrightarrow\dfrac{8}{3}:x=\dfrac{25}{12}:\dfrac{-3}{50}=\dfrac{25}{12}\cdot\dfrac{-50}{3}\)
hay x=-48/625
9: =>x=-2*3/1,5=-4
8: =>2/3:x=5/2:-3/10=5/2*(-10)/3=-50/6=-25/3
=>x=-2/3:25/3=-2/3*3/25=-2/25
a. \(\left(\dfrac{1}{2}+1,5\right)x=\dfrac{1}{5}\Rightarrow2x=\dfrac{1}{5}\Rightarrow x=\dfrac{1}{5}:2=0,1\)
Vậy \(x=0,1\)
b. \(\left(-1\dfrac{3}{5}+x\right):\dfrac{12}{13}=2\dfrac{1}{6}\Rightarrow-1\dfrac{3}{5}+x=\dfrac{13}{6}\cdot\dfrac{12}{13}=2\Rightarrow x=2+1\dfrac{3}{5}=3,6\)
Vậy \(x=3,6\)
c. \(-\dfrac{4}{7}x+\dfrac{7}{5}=\dfrac{1}{8}:\left(-1\dfrac{2}{3}\right)\Rightarrow-\dfrac{4}{7}x+\dfrac{7}{5}=-\dfrac{3}{40}\Rightarrow-\dfrac{4}{7}x=-\dfrac{3}{40}-\dfrac{7}{5}=-\dfrac{59}{40}\Rightarrow x=\left(-\dfrac{59}{40}\right):\left(-\dfrac{4}{7}\right)=2,58125\)
Vậy \(x=2,58125\)
|2x-1|=1,5
TH(1)2x-1=1,5
2x =1,5+1
2x =2,5
x =2,5 :2
x =1,25
TH(2) 2x-1=-1,5
2x =-1,5+1
2x =-0,5
x =-0,5:2
x =-0,25
các câu khác cứ tương tự bạn nhé
b) \(7,5-\left|5-2x\right|=-4,5\)
\(\left|5-2x\right|=7,5+4,7\)
\(\left|5-2x\right|=12\)
th1 :\(5-2x=12\)
\(2x=5-12\)
\(2x=-7\)
\(x=-7:2\)
\(x=-3,5\)
th2: \(5-2x=-12\)
\(2x=5+12\)
\(2x=17\)
\(x=17:2\)
\(x=8,5\)
c) \(-3+\left|x\right|=-1\)
\(\left|x\right|=-1+3\)
\(\left|x\right|=2\)
th1: \(x=-2\)
th2 : \(x=2\)
d)\(\left|2\dfrac{1}{3}-x\right|=\dfrac{1}{6}\)
\(\left|\dfrac{7}{3}-x\right|=\dfrac{1}{6}\)
th1 :\(\dfrac{7}{3}-x=\dfrac{1}{6}\)
\(x=\dfrac{7}{3}-\dfrac{1}{2}\)
\(x=\dfrac{11}{6}\)
th2: \(\dfrac{7}{3}-x=\dfrac{-1}{6}\)
\(x=\dfrac{7}{3}+\dfrac{1}{6}\)
\(x=\dfrac{-5}{2}\)
e) \(\dfrac{5}{7}-\left|x+1\right|=\dfrac{1}{14}\)
\(\left|x+1\right|=\dfrac{5}{7}-\dfrac{1}{14}\)
\(\left|x+1\right|=\dfrac{9}{14}\)
th1 :\(x+1=\dfrac{9}{14}\)
\(x=\dfrac{9}{14}-1\)
\(x=\dfrac{-5}{14}\)
th2 : \(x+1=\dfrac{-9}{14}\)
\(x=\dfrac{-9}{14}-1\)
\(x=\dfrac{-5}{14}\)
a, \(\dfrac{3}{7}+\dfrac{4}{7}x=\dfrac{1}{3}\)
\(\Rightarrow\) \(\dfrac{4}{7}x=\dfrac{1}{3}-\dfrac{3}{7}\)
\(\Rightarrow\) \(\dfrac{4}{7}x=\dfrac{-2}{21}\)
\(\Rightarrow x=\dfrac{-2}{21}:\dfrac{4}{7}\)
\(\Rightarrow x=\dfrac{-1}{6}\)
b, \(25-\left(5-x\right)=-7\)
\(\Rightarrow\) \(5-x=25-\left(-7\right)\)
\(\Rightarrow5-x=32\)
\(\Rightarrow x=5-32\)
\(\Rightarrow x=-27\)
c, \(\dfrac{3}{4}+\dfrac{1}{4}:x=\dfrac{2}{5}\)
\(\Rightarrow\dfrac{1}{4}:x=\dfrac{2}{5}-\dfrac{3}{4}\)
\(\Rightarrow\dfrac{1}{4}:x=\dfrac{-7}{20}\)
\(\Rightarrow x=\dfrac{1}{4}:\dfrac{-7}{20}\)
\(\Rightarrow x=\dfrac{-5}{7}\)
d, \(2x\left(x-\dfrac{1}{7}\right)=0\)
\(\Rightarrow\) \(\left[{}\begin{matrix}2x=0\\x-\dfrac{1}{7}=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0:2\\x=0+\dfrac{1}{7}\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x=\dfrac{1}{7}\end{matrix}\right.\)
e, \(\left|\dfrac{1}{2}x-\dfrac{3}{4}\right|-7=-3\)
\(\Rightarrow\left|\dfrac{1}{2}x-\dfrac{3}{4}\right|=-3+7\)
\(\Rightarrow\left|\dfrac{1}{2}x-\dfrac{3}{4}\right|=4\)
\(\Rightarrow\left[{}\begin{matrix}\dfrac{1}{2}x-\dfrac{3}{4}=4\\\dfrac{1}{2}x-\dfrac{3}{4}=-4\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}\dfrac{1}{2}x=4+\dfrac{3}{4}\\\dfrac{1}{2}x=-4+\dfrac{3}{4}\end{matrix}\right.\)\(\Leftrightarrow\left[{}\begin{matrix}\dfrac{1}{2}x=\dfrac{19}{4}\\\dfrac{1}{2}x=\dfrac{-13}{4}\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{19}{4}:\dfrac{1}{2}\\x=\dfrac{-13}{4}:\dfrac{1}{2}\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{19}{2}\\x=\dfrac{-13}{2}\end{matrix}\right.\)
a)\(\dfrac{3}{7}+\dfrac{4}{7}x=\dfrac{1}{3}\)
\(\dfrac{4}{7}x=\dfrac{1}{3}-\dfrac{3}{7}\)
\(\dfrac{4}{7}x=\dfrac{-2}{21}\)
\(x=\dfrac{-2}{21}:\dfrac{4}{7}\)
\(x=\dfrac{-1}{6}\)
b)\(25-\left(5-x\right)=-7\)
\(5-x=25-\left(-7\right)\)
\(5-x=32\)
x= -27
c)\(\dfrac{3}{4}+\dfrac{1}{4}:x=\dfrac{2}{5}\)
\(\dfrac{1}{4}:x=\dfrac{2}{5}-\dfrac{3}{4}\)
\(\dfrac{1}{4}:x=\dfrac{-7}{20}\)
\(x=\dfrac{1}{4}:\dfrac{-7}{20}\)
\(x=\dfrac{-5}{7}\)
d)\(2x\left(x-\dfrac{1}{7}\right)=0\)
⇒\(\left[{}\begin{matrix}2x=0\\x-\dfrac{1}{7}=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=0\\x=\dfrac{1}{7}\end{matrix}\right.\)
e)\(|\dfrac{1}{2}x-\dfrac{3}{7}|-7=-3\)
\(\left|\dfrac{1}{2}x-\dfrac{3}{7}\right|=-3+7\)
\(\left|\dfrac{1}{2}x-\dfrac{3}{7}\right|=4\)
⇒\(\left[{}\begin{matrix}\dfrac{1}{2}x-\dfrac{3}{4}=4\\\dfrac{1}{2}x-\dfrac{3}{4}=-4\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}\dfrac{1}{2}x=4\dfrac{3}{4}\Rightarrow x=9\dfrac{1}{2}=\dfrac{19}{2}\\\dfrac{1}{2}x=-3\dfrac{1}{4}\Rightarrow x=\dfrac{-13}{2}\end{matrix}\right.\)
a,
\(\dfrac{1}{4}x-1+\dfrac{1}{3}\left(\dfrac{5}{2}x-7\right)-\left(\dfrac{5}{8}x-2\right)=\dfrac{7}{2}\)
\(\Rightarrow\dfrac{1}{4}x-1+\dfrac{5}{6}x-\dfrac{7}{3}-\dfrac{5}{8}x+2=\dfrac{7}{2}\)
\(\Rightarrow\dfrac{1}{4}x+\dfrac{5}{6}x-\dfrac{5}{8}x=\dfrac{7}{2}+1+\dfrac{7}{3}-2\)
\(\Rightarrow\dfrac{11}{24}x=\dfrac{29}{6}\)
\(\Rightarrow x=\dfrac{116}{11}\)
b,
\(\left|2-\dfrac{3}{2}x\right|-4=x+2\)
\(\Rightarrow\left|2-\dfrac{3}{2}x\right|=x-2\)
\(\Rightarrow\left[{}\begin{matrix}2-\dfrac{3}{2}x=x+2\\2-\dfrac{3}{2}x=-\left(x+2\right)\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}2-\dfrac{3}{2}x=x+2\\2-\dfrac{3}{2}x=-x-2\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}2-2=x+\dfrac{3}{2}x\\2+2=-x+\dfrac{3}{2}x\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}\dfrac{5}{2}x=0\\\dfrac{1}{2}x=4\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=0\\x=8\end{matrix}\right.\)
c,
\(-3\left(\dfrac{2}{5}x-\dfrac{1}{5}\right)-x\left(x-\dfrac{1}{2}\right)=\dfrac{1}{6}-x^2\)
\(\Rightarrow-\dfrac{6}{5}x+\dfrac{3}{5}-x^2+\dfrac{1}{2}x=\dfrac{1}{6}-x^2\)
\(\Rightarrow-\dfrac{7}{10}x=\dfrac{1}{6}-\dfrac{3}{5}-x^2+x^2\)
\(\Rightarrow-\dfrac{7}{10}x=-\dfrac{13}{30}\Leftrightarrow x=\dfrac{13}{21}\)
a: TH1: x>=0
=>x+x=1/3
=>x=1/6(nhận)
TH2: x<0
Pt sẽ là -x+x=1/3
=>0=1/3(loại)
b: \(\Leftrightarrow\left\{{}\begin{matrix}x>=0\\x^2-x-2=0\end{matrix}\right.\Leftrightarrow x=2\)
c: \(\Leftrightarrow\dfrac{1}{x-1}-\dfrac{1}{x-3}+\dfrac{1}{x-3}-\dfrac{1}{x-8}+\dfrac{1}{x-8}-\dfrac{1}{x-20}-\dfrac{1}{x-20}=\dfrac{-3}{4}\)
\(\Leftrightarrow\dfrac{1}{x-1}-\dfrac{2}{x-20}=\dfrac{-3}{4}\)
\(\Leftrightarrow\dfrac{x-20-2x+2}{\left(x-1\right)\left(x-20\right)}=\dfrac{-3}{4}\)
\(\Leftrightarrow-3\left(x^2-21x+20\right)=4\left(-x-18\right)\)
\(\Leftrightarrow3x^2-63x+60=4x+72\)
=>3x^2-67x-12=0
hay \(x\in\left\{22.51;-0.18\right\}\)
a: \(\Leftrightarrow\dfrac{3}{5}-\dfrac{8}{5}\left(\dfrac{2}{3}x-\dfrac{3}{2}\right)=\dfrac{-17}{5}\)
=>8/5(2/3x-3/2)=3/5+17/5=4
=>2/3x-3/2=4:8/5=4*5/8=5/2
=>2/3x=4
=>x=4:2/3=6
b: =>x^2-4x-5=x^2-7x
=>-4x-5=-7x
=>3x=5
=>x=5/3