Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Đặt t = x2
bthuc <=> t2 - 7t + 16
Từ đây ta không thể phân tích được :)
b) x3 - 2x2 + 5x - 4
= x3 - x2 - x2 + x + 4x - 4
= x2( x - 1 ) - x( x - 1 ) + 4( x - 1 )
= ( x - 1 )( x2 - x + 4 )
c) x3 - 2x2 + x - 3 ( phân tích hổng ra :)) )
d) 3x3 - 4x2 + 12x - 4 ( phân tích hổng ra p2 :)) )
e) 6x3 + x2 + x + 1
= 6x3 + 3x2 - 2x2 - x + 2x + 1
= 3x2( 2x + 1 ) - x( 2x - 1 ) + ( 2x + 1 )
= ( 2x + 1 )( 3x2 - x + 1 )
f) 4x3 + 6x2 + 4x + 1
= 4x3 + 2x2 + 4x2 + 2x + 2x + 1
= 2x2( 2x + 1 ) + 2x( 2x + 1 ) + ( 2x + 1 )
= ( 2x + 1 )( 2x2 + 2x + 1 )
\(a)\)
\(\left(x^2+4x\right)^2+9x^2-6x\left(x^2+4x\right)\)
\(=\left(x^2+4x\right)\left(x^2+4x-6x\right)+9x^2\)
\(=\left(x^2+4x\right)\left(x^2-2x\right)+9x^2\)
\(=x\left(x+4\right)x\left(x-2\right)+9x^2\)
\(=x^2\left(x^2+4x-2x-8\right)+9x^2\)
\(=x^2\left(x^2+2x-8\right)+9x^2\)
\(=x^4+2x^3-8x^2+9x^2\)
\(=x^4+2x^3+x^2\)
\(=x^2\left(x^2+2x+1\right)\)
\(=x^2\left(x+1\right)^2\)
\(b)\)
\(\left(-6x^3+7x^2-4x+1\right):\left(-2+1\right)\)
\(=\left(-6x^3+7x^2-4x+1\right)\left(-1\right)\)
\(=6x^3-7x^2+4x-1\)
\(c)\)
\(\left(x-1\right)\left(x-2\right)\left(3x-4\right)\)
\(=\left(x^2-3x+2\right)\left(3x-4\right)\)
\(=3x^3-4x^2-9x^2+12x+6x-8\)
\(=3x^3-13x^2+18x-8\)
Bài làm :
a) x( 2x - 7 ) - 4x + 14 = 0
<=> x( 2x - 7 ) - 2( 2x - 7 ) = 0
<=> ( 2x - 7 )( x - 2 ) = 0
\(\Leftrightarrow\orbr{\begin{cases}2x-7=0\\x-2=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=\frac{7}{2}\\x=2\end{cases}}\)
b) Sửa đề : 5x3 + x2 - 4x + 9 = 0
<=>( 5x3 + 5 ) + (x2 - 4x +4)=0
<=> 5(x3 + 1) + (x-2)2 = 0
<=> 5(x+1)(x2 - x +1) + (x+2)2 =0
\(\Leftrightarrow\orbr{\begin{cases}x=-1\\x=-2\end{cases}}\)
c) 3x3 - 7x2 + 6x - 14 = 0
<=> 3x2( x - 7/3 ) + 6( x - 7/3 ) = 0
<=> ( x - 7/3 )( 3x2 + 6 ) = 0
\(\Leftrightarrow\orbr{\begin{cases}x-\frac{7}{3}=0\\3x^2+6=0\end{cases}}\Leftrightarrow x=\frac{7}{3}\)
d) 5x2 - 5x = 3( x - 1 )
<=> 5x( x - 1 ) - 3( x - 1 ) = 0
<=> ( x - 1 )( 5x - 3 ) = 0
\(\Leftrightarrow\orbr{\begin{cases}x-1=0\\5x-3=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=1\\x=\frac{3}{5}\end{cases}}\)
e) 4x2 - 25 - ( 4x - 10 ) = 0
<=> ( 2x - 5 )( 2x + 5 ) - 2( 2x - 5 ) = 0
<=> ( 2x - 5 )( 2x + 5 - 2 ) = 0
<=> ( 2x - 5 )( 2x + 3 ) = 0
\(\Leftrightarrow\orbr{\begin{cases}2x-5=0\\2x+3=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=\frac{5}{2}\\x=-\frac{3}{2}\end{cases}}\)
f) x3 + 27 + ( x + 3 )( x - 9 ) = 0
<=> ( x + 3 )( x2 - 3x + 9 ) + ( x + 3 )( x - 9 ) = 0
<=> ( x + 3 )( x2 - 3x + 9 + x - 9 ) = 0
<=> ( x + 3 )( x2 - 2x ) = 0
<=> x( x + 3 )( x - 2 ) = 0
\(\Leftrightarrow\orbr{\begin{cases}\\\end{cases}}\begin{cases}x=0\\x=-3\\x=2\end{cases}\)
a) x( 2x - 7 ) - 4x + 14 = 0
<=> x( 2x - 7 ) - 2( 2x - 7 ) = 0
<=> ( 2x - 7 )( x - 2 ) = 0
<=> \(\orbr{\begin{cases}2x-7=0\\x-2=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=\frac{7}{2}\\x=2\end{cases}}\)
b) 5x3 + x2 - 4x - 9 = 0 ( đề sai )
c) 3x3 - 7x2 + 6x - 14 = 0
<=> 3x2( x - 7/3 ) + 6( x - 7/3 ) = 0
<=> ( x - 7/3 )( 3x2 + 6 ) = 0
<=> \(\orbr{\begin{cases}x-\frac{7}{3}=0\\3x^2+6=0\end{cases}}\Leftrightarrow x=\frac{7}{3}\)( do 3x2 + 6 ≥ 6 > 0 với mọi x )
d) 5x2 - 5x = 3( x - 1 )
<=> 5x( x - 1 ) - 3( x - 1 ) = 0
<=> ( x - 1 )( 5x - 3 ) = 0
<=> \(\orbr{\begin{cases}x-1=0\\5x-3=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=1\\x=\frac{3}{5}\end{cases}}\)
e) 4x2 - 25 - ( 4x - 10 ) = 0
<=> ( 2x - 5 )( 2x + 5 ) - 2( 2x - 5 ) = 0
<=> ( 2x - 5 )( 2x + 5 - 2 ) = 0
<=> ( 2x - 5 )( 2x + 3 ) = 0
<=> \(\orbr{\begin{cases}2x-5=0\\2x+3=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=\frac{5}{2}\\x=-\frac{3}{2}\end{cases}}\)
f) x3 + 27 + ( x + 3 )( x - 9 ) = 0
<=> ( x + 3 )( x2 - 3x + 9 ) + ( x + 3 )( x - 9 ) = 0
<=> ( x + 3 )( x2 - 3x + 9 + x - 9 ) = 0
<=> ( x + 3 )( x2 - 2x ) = 0
<=> x( x + 3 )( x - 2 ) = 0
<=> x = 0 hoặc x + 3 = 0 hoặc x - 2 = 0
<=> x = 0 hoặc x = -3 hoặc x = 2
a) x3 + 2x - 3
=x3+x2+3x-x2+x+3
=x(x2+x+3)-1(x2+x+3)
=(x-1)(x2+x+3)
b) x3 - x2 + x + 3
=x3-2x2+3x+x2-2x+3
=x(x2-2x+3)+1(x2-2x+3)
=(x+1)(x2-2x+3)
c) 3x3 - 4x2 + 13x - 4
=3x3-3x2+12-x2-x+4
=3x(x2-x+4)-1(x2-x+4)
=(3x-1)(x2-x+4)
d) 6x3 + x2 + x + 1
=6x3-2x2+2x+3x2-x+1
=2x(3x2-x+1)+1(3x2-x+1)
=(2x+1)(3x2-x+1)
e)bạn phân tích tương tự nhé mk cho đáp án để bạn đổi chiếu nè
=(2x+1)(2x2+2x+1)
\(a,-2x\left(2-3x\right)+3\left(-5+7x-6x^2\right)=-4\)
\(\Rightarrow-4x+6x^2-15+21x-18x^2=-4\)
\(\Rightarrow-12x^2+17x-11=0\)
\(\Rightarrow12x^2-17x+11=0\)
\(\Rightarrow9x^2-2.3.\frac{17}{6}x+\left(\frac{17}{6}\right)^2-\left(\frac{17}{6}\right)^2+11=0\)
\(\Rightarrow\left(3x-\frac{17}{6}\right)^2+\frac{107}{36}=0VN\)
Không có gt x thỏa mãn
\(b,-3x\left(-1+3x-4x^2\right)+6x^2\left(-2x+3\right)=0\)
\(\Rightarrow3x-9x^2+12x^3-12x^3+18x^2=0\)
\(\Rightarrow9x^2+3x=0\)
\(\Rightarrow3x\left(3x+1\right)=0\)
\(\Rightarrow\orbr{\begin{cases}3x=0\\3x+1=0\end{cases}\Rightarrow\orbr{\begin{cases}x=0\\3x=-1\end{cases}\Rightarrow}\orbr{\begin{cases}x=0\\x=-\frac{1}{3}\end{cases}}}\)
Lời giải:
a) ĐKXĐ: $x\neq \pm 1$
\(\frac{x^4-4x^2+3}{x^4+6x^2-7}=\frac{x^2(x^2-1)-3(x^2-1)}{x^2(x^2-1)+7(x^2-1)}=\frac{(x^2-3)(x^2-1)}{(x^2-1)(x^2+7)}=\frac{x^2-3}{x^2+7}\)
b) ĐKXĐ: Với mọi $x\in\mathbb{R}$
\(\frac{x^4+x^3-x-1}{x^4+x^4+2x^2+x+1}=\frac{(x^4-x)+(x^3-1)}{(x^4+x^3+x^2)+(x^2+x+1)}=\frac{x(x^3-1)+(x^3-1)}{x^2(x^2+x+1)+(x^2+x+1)}\)
\(=\frac{(x^3-1)(x+1)}{(x^2+1)(x^2+x+1)}=\frac{(x-1)(x^2+x+1)(x+1)}{(x^2+1)(x^2+x+1)}=\frac{x^2-1}{x^2+1}\)
c) ĐK: $x\neq 1;-2$
\(\frac{x^3+3x^2-4}{x^3-3x+2}=\frac{x^2(x-1)+4(x^2-1)}{x^2(x-1)+x(x-1)-2(x-1)}=\frac{(x-1)(x^2+4x+4)}{(x-1)(x^2+x-2)}\)
\(=\frac{(x-1)(x+2)^2}{(x-1)(x-1)(x+2)}=\frac{x+2}{x-1}\)
d) ĐK: $x^2+3x-1\neq 0$
\(\frac{x^4+6x^3+9x^2-1}{x^4+6x^3+7x^2-6x+1}=\frac{(x^2+3x)^2-1}{(x^2+3x)^2-2x^2-6x+1}\)
\(=\frac{(x^2+3x-1)(x^2+3x+1)}{(x^2+3x)^2-2(x^2+3x)+1}=\frac{(x^2+3x-1)(x^2+3x+1)}{(x^2+3x-1)^2}=\frac{x^2+3x+1}{x^2+3x-1}\)
Bài làm:
a) \(4x^2-7x+3=0\)
\(\Leftrightarrow\left(4x^2-4x\right)-\left(3x-3\right)=0\)
\(\Leftrightarrow4x\left(x-1\right)-3\left(x-1\right)=0\)
\(\Leftrightarrow\left(4x-3\right)\left(x-1\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}4x-3=0\\x-1=0\end{cases}\Leftrightarrow}\orbr{\begin{cases}x=\frac{3}{4}\\x=1\end{cases}}\)
b) \(\left(4x^2-4\right)\left(x^2-x\right)=0\)
\(\Leftrightarrow4x\left(x-1\right)^2\left(x+1\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x=0\\x=\pm1\end{cases}}\)(Do viết PT lỗi nên bạn tự giải nha)
c) \(6x^2-4x-2=0\)
\(\Leftrightarrow\left(6x^2-6x\right)+\left(2x-2\right)=0\)
\(\Leftrightarrow6x\left(x-1\right)+2\left(x-1\right)=0\)
\(\Leftrightarrow2\left(3x+1\right)\left(x-1\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}3x+1=0\\x-1=0\end{cases}\Leftrightarrow}\orbr{\begin{cases}x=-\frac{1}{3}\\x=1\end{cases}}\)
Sa
a) \(4x^2-7x+3=0\)
Dễ dàng nhận thấy a + b + c = 4 + ( -7 ) + 3 = 0
Vậy nên phương trình đã cho có hai nghiệm phân biệt
\(\hept{\begin{cases}x_1=1\\x_2=\frac{c}{a}=\frac{3}{4}\end{cases}}\)
Vậy \(S=\left\{1;\frac{3}{4}\right\}\)
b) \(\left(4x^2-4\right)\left(x^2-x\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}4x^2-4=0\\x^2-x=0\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}4\left(x^2-1\right)=0\\x\left(x-1\right)=0\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x^2-1=0\Leftrightarrow x^2=1\Leftrightarrow x=\pm1\\x-1=0\Leftrightarrow x=1\\x=0\end{cases}}\)( chỗ này bạn thay bằng dấu hoặc nhé )
Vậy \(S=\left\{0;\pm1\right\}\)
c) \(6x^2-4x-2=0\)
Dễ dàng nhận thấy a + b + c = 6 + ( -4 ) + ( -2 ) = 0
Vậy nên phương trình đã cho có hai nghiệm phân biệt :
\(\hept{\begin{cases}x_1=1\\x_2=\frac{c}{a}=\frac{-2}{6}=-\frac{1}{3}\end{cases}}\)
Vậy \(S=\left\{1;-\frac{1}{3}\right\}\)
a) \(3x^2-6x=x^2-4x+4\)
\(\Leftrightarrow2x^2-2x-4=0\)
\(\Leftrightarrow2\left(x^2-x-2\right)=0\)
\(\Leftrightarrow2\left(x-2\right)\left(x+1\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x-2=0\\x+1=0\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=2\\x=-1\end{cases}}\)
Vậy \(S=\left\{2;-1\right\}\)
b) \(x^3-7x^2+6x=0\)
\(\Leftrightarrow x\left(x^2-7x+6\right)=0\)
\(\Leftrightarrow x\left(x-6\right)\left(x-1\right)=0\)
\(\Leftrightarrow x=0;x-6=0;x-1=0\)
\(\Leftrightarrow x=0;x=6;x=1\)
Vậy \(S=\left\{0;6;1\right\}\)
c) \(x^4+4x^3+4x^2=25\)
\(\Leftrightarrow x^2\left(x^2+4x+4\right)=25\)
\(\Leftrightarrow x^2\left(x+2\right)^2-25=0\)
\(\Leftrightarrow\left[x\left(x+2\right)\right]^2-5^2=0\)
\(\Leftrightarrow\left(x^2+2x-5\right)\left(x^2+2x+5\right)=0\)
\(\Leftrightarrow\left(x+1-\sqrt{6}\right)\left(x+1+\sqrt{6}\right)=0\) (vì \(x^2+2x+5>0\) )
\(\Leftrightarrow\orbr{\begin{cases}x+1-\sqrt{6}=0\\x+1+\sqrt{6}=0\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=\sqrt{6}-1\\x=-\sqrt{6}-1\end{cases}}\)
Vậy \(S=\left\{\sqrt{6}-1;-\sqrt{6}-1\right\}\)
a,\(3x^2-6x=\left(x^2-4x+4\right)\)
\(3x^2-6x-x^2+4x-4=0\)
\(3x^2-x^2-6x+4x-4=0\)
\(2x^2-2x-4=0\)
\(2x^2+2x-4x-4=0\)
\(2x\left(x+1\right)-4\left(x+1\right)=0\)
\(\left(2x-4\right)\left(x+1\right)=0\)
\(\Rightarrow\orbr{\begin{cases}x=2\\x=-1\end{cases}}\)
b, \(x^3-7x^2+6x=0\)
\(x^3-x^2-6x^2+6x=0\)
\(x^2\left(x-1\right)-6x\left(x-1\right)=0\)
\(\left(x-1\right)\left(x^2-6\right)=0\)
\(\Rightarrow\orbr{\begin{cases}x=-1\\x=\pm6\end{cases}}\)