Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bg
c) 9 < 3x : 3 < 81
=> 32 < 3x - 1 < 34
=> x - 1 = {2; 3; 4}
=> x = {3; 4; 5}
d) 5x . 5x + 1 . 5 x + 2 < 218 . 518 : 218
=> 5x + x + 1 + x + 2 < 218 : 218 . 518
=> 53x + 3 < 1.518
=> 53.(x + 1) < 518
=> 3.(x + 1) < 18
=> x + 1 < 18 : 3
=> x + 1 < 6
=> x < 6 - 1
=> x < 5
c. \(9\le3^x:3\le81\)
\(\Rightarrow3^2\le3^{x-1}\le3^4\)
\(\Rightarrow3^{x-1}\in\left\{3^2;3^3;3^4\right\}\)
\(\Rightarrow x-1\in\left\{2;3;4\right\}\)
\(\Rightarrow x\in\left\{3;4;5\right\}\)
d. Thêm đk : x thuộc N
\(5^x.5^{x+1}.5^{x+2}\le2^{18}.5^{18}:2^{18}\)
\(\Rightarrow5^{x+x+1+x+2}\le5^{18}\)
\(\Rightarrow x+x+x+1+2\le18\)
\(\Rightarrow3x+3\le18\)
\(\Rightarrow3\left(x+1\right)\le18\)
\(\Rightarrow x+1\le6\)
\(\Rightarrow x\le5\)
\(\Rightarrow x\in\left\{1;2;3;4;5\right\}\)
Đặt \(A=5+5^3+5^5+....+5^{47}+5^{49}\)
\(\Rightarrow5^2A=5^3+5^5+5^7+.....+5^{49}+5^{51}\)
\(\Rightarrow5^2A-A=\left(5^3+5^5+5^7+....+5^{49}+5^{51}\right)-\left(3+3^3+3^5+....+5^{47}+5^{49}\right)\)
\(\Rightarrow24A=5^{51}-5\)
\(\Rightarrow A=\dfrac{5^{51}-5}{24}\)
Vậy ............................................................
1)a) \(\left(3x-7\right)^5=32\Rightarrow\left(3x-7\right)^5=2^5\)
\(\Rightarrow3x-7=2\Rightarrow3x=9\Rightarrow x=3\)
Vậy \(x=3\)
b) \(\left(4x-1\right)^3=-27.125\)
\(\Rightarrow\left(4x-1\right)^3=-3^3.5^3=-15^3\)
\(\Rightarrow4x-1=-15\Rightarrow4x=-14\Rightarrow x=-3,5\)
Vậy \(x=-3,5\)
c) \(3^{4x+4}=81^{x+3}\Rightarrow3^{4x+4}=3^{4x+12}\)
\(\Rightarrow4x+4=4x+12\)
\(\Rightarrow4x=4x+8\)
\(\Rightarrow x\in\varnothing\)
d) \(\left(x-5\right)^7=\left(x-5\right)^9\)
\(\Rightarrow\left(x-5\right)^7-\left(x-5\right)^9=0\)
\(\Rightarrow\left(x-5\right)^7.\left[1-\left(x-5\right)^2\right]=0\)
\(\Rightarrow\left[{}\begin{matrix}\left(x-5\right)^7=0\\1-\left(x-5\right)^2=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=5\\\left(x-5\right)^2=1\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=5\\x-5=-1\\x-5=1\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=5\\x=4\\x=6\end{matrix}\right.\)
Vậy \(\left[{}\begin{matrix}x=5\\x=4\\x=6\end{matrix}\right.\)
1+3+5+...+x=1600
=(x+1).[(x-1):2+1] /2 =1600
=(x+1).(x+1) /2 =1600
=(x+1)^2:2=40^2
=(x+1):2=40
=x+1=80
=x=79
a: \(\dfrac{4^5+4^5+4^5+4^5}{3^5+3^5+3^5+3^5}\cdot\dfrac{6^5+6^5+6^5+6^5+6^5+6^5}{2^5+2^5+2^5+2^5+2^5+2^5}=2^x\)
\(\Leftrightarrow2^x=\dfrac{4^5}{3^5}\cdot\dfrac{6^5}{2^5}=4^5=2^{10}\)
=>x=10
b: \(\left(x-1\right)^{x+4}=\left(x-1\right)^{x+2}\)
\(\Leftrightarrow\left(x-1\right)^{x+2}\left[\left(x-1\right)^2-1\right]=0\)
\(\Leftrightarrow x\left(x-1\right)^{x+2}\cdot\left(x-2\right)=0\)
hay \(x\in\left\{0;1;2\right\}\)
c: \(6\left(6-x\right)^{2003}=\left(6-x\right)^{2003}\)
\(\Leftrightarrow5\cdot\left(6-x\right)^{2003}=0\)
\(\Leftrightarrow6-x=0\)
hay x=6
\(x^{2018}-x^{18}=0\)
\(x^{18}.\left(x^{2018}-1\right)=0\)
\(=>\orbr{\begin{cases}x^{18}=0\\x^{2018}-1=0\end{cases}}\)
\(=>\orbr{\begin{cases}x=0\\x=1\end{cases}}\)
b) 275 > 81x
<=> 315 > 34x
<=> 15 > 4x
<=> x < 15 /4
c) 1252+x > 258
<=> 53(2+x) > 516
<=> 3(2+x) > 16
<=> 6 + 3x > 16
<=> 3x > 10
<=> x > 10/3
d) 5x . 5x+1 . 5x+2 <= 100...0 ( 18 số 0 ) : 218
<=> 5x+x+1+x+2 <= 1018 : 218
<=> 53x+3 <= 518
<=> 3x+3 <= 18
<=> 3x <= 15
<=> x <= 5
( <= là bé hơn hoặc bằng )
a) \(3^{x+1}.15=135\)
\(\Rightarrow3^{x+1}=9\)
\(\Rightarrow3^{x+1}=3^2\)
\(\Rightarrow x+1=2\)
\(\Rightarrow x=1\)
Vậy \(x=1\)
b) \(x+2x+2^2x+....+2^{2016}x=2^{2017}-1\\ \Rightarrow x\left(2+2^2+...+2^{2016}\right)=2^{2017}-1\\ \Rightarrow x\left(2^{2017}-2\right)=2^{2017}-1\)
c) \(x\left(x-1\right)+\left(x-1\right)^2=0\\ \Rightarrow x\left(x-1\right)+\left(x-1\right)\left(x-1\right)=0\\ \Rightarrow\left(x-1\right)\left(x+\left(x-1\right)\right)=0\\ \Rightarrow\left(x-1\right)\left(2x-1\right)=0\\ \Rightarrow\begin{cases}x-1=0\\2x-1=0\end{cases}\)
d) \(2^2.2^5\le2^{x-5}\le2^{10}\\ \Rightarrow2^7\le2^{x-5}\le2^{10}\)
Bài 1 :
Ta có : \(5< 5^x< 125\)
=> \(\left\{{}\begin{matrix}5^x>5\\5^x< 125\end{matrix}\right.\)
=> \(\left\{{}\begin{matrix}5^x>5^1\\5^x< 5^3\end{matrix}\right.\)
=> \(\left\{{}\begin{matrix}x>1\\x< 3\end{matrix}\right.\)
=> \(1< x< 3\)
Mà x là số nguyên .
=> \(x=2\)
Bài 2 :
a, Ta có : \(-12< x< 13\)
=> \(x=\left\{-11;-10;...;11;12\right\}\)
=> Tổng \(=-11+11-10+10-..+..+12=12\)
b, Ta có : \(-12\le x\le13\)
=> \(x=\left\{-12;-11;-10;...;11;12;13\right\}\)
=> Tổng \(=-12+12-11+11-10+10-..+..+13=13\)
c, d, Tương tự nha
I, Tìm x ∈ Z
5 < 5x < 125
=> 51 < 5x < 53
=> 1 < x < 3
=> x = 2
II, Tìm tổng các số nguyên x
a) -12 < x < 13
=> x = -11;-10;....;11;12
=> -11+(-10)+....+11+12
= (-11 + 11) + (-10 + 10) +...+ (-1 + 1) + 0 +12
= 12
b) -12 ≤ x < 13
=> x = -12;-11;-10;....;11;12
=> (-12)+(-11)+(-10)+....+11+12
= (-12 + 12) +(11 + 11) + (-10 + 10) +...+ (-1 + 1) + 0
= 0
c) -12 ≤ x ≤ 13
=> x = -12;-11;-10;....;11;12;13
=> (-12)+(-11)+(-10)+....+11+12 + 13
= (-12 + 12) +(-11 + 11) + (-10 + 10) +...+ (-1 + 1) + 0 +13
= 13
d -120 ≤ x ≤ 121
=> x = -120;-119;-118;....;118;119;120;121
=> (-120)+(-119)+(-118)+....+119+120 + 121
= (-120 + 120) +(-119 + 119) + (-118 + 118) +...+ (-1 + 1) + 0 +121
= 121
2x = 32
=> 2x = 25
=> x = 5
vậy_
a) \(2^x=32\)
Ta có: \(2^5=32\)
\(\Rightarrow2^x=2^5\)
\(\Rightarrow x=5\)
b) Sửa đề tí: \(9< 3^x< 81\)
\(\Rightarrow3^2< 3^x< 3^4\)
\(\Rightarrow2< x< 4\)
\(\Rightarrow x=\left\{3\right\}\)
Vậy x = 3
c) Ta có: \(25\le5^x\le125\)
\(\Rightarrow5^2\le5^x\le5^3\)
\(\Rightarrow2\le x\le3\)
\(\Rightarrow x=\left\{2;3\right\}\)
Vậy x = 2 hoặc x = 3
d) \(\left(x-2\right)^3\times5=40\)
\(\Rightarrow\left(x-2\right)^3=8\)
Mà \(8=2^3\Rightarrow\left(x-2\right)^3=2^3\)
Suy ra: x - 2 = 2
Vậy x = 4