![](https://rs.olm.vn/images/avt/0.png?1311)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
a) (2x-1)2016=[(2x-1)1008]2 \(\ge\)0 => Không có x thỏa mãn
b) (3x+4)4=16=24 => 3x+4=2 => x=\(-\frac{2}{3}\)
c) (2x-1)3=-8=(-2)3 => 2x-1=-2 => x=-\(\frac{1}{2}\)
mk làm được câu b thôi !
(3x+4)^4=16
((3x+4)^2)^2=4^2
(3x+4)^2=4 ( giảm 2 vế ; giảm ^2 vế trái và vế phải )
(3x+4)^2=2^2
3x+4=2 ( giảm 2 vế ; giảm ^2 vế trái và vế phải )
3x=2-4
3x=-2
x=-2/3
x=\(\frac{-2}{3}\)
![](https://rs.olm.vn/images/avt/0.png?1311)
1/
a/ Đặt f (x) = x2 - 3
Khi f (x) = 0
=> \(x^2-3=0\)
=> \(x^2=3\)
=> \(x=\sqrt{3}\)
Vậy \(\sqrt{3}\)là nghiệm của đa thức x2 - 3.
b/ Đặt g (x) = x2 + 2
Khi g (x) = 0
=> \(x^2+2=0\)
=> \(x^2=-2\)
=> \(x\in\varnothing\)
Vậy x2 + 2 vô nghiệm.
c/ Đặt P (x) = x2 + (x2 + 3)
Khi P (x) = 0
=> \(x^2+\left(x^2+3\right)=0\)
=> \(\hept{\begin{cases}x^2=0\\x^2+3=0\end{cases}}\)=> \(\hept{\begin{cases}x=0\\x=\sqrt{3}\end{cases}}\)(loại)
Vậy x2 + (x2 + 3) vô nghiệm.
d/ Đặt \(Q\left(x\right)=2x^2-\left(1+2x^2\right)+1\)
Khi Q (x) = 0
=> \(2x^2-\left(1+2x^2\right)+1=0\)
=> \(2x^2-\left(1+2x^2\right)=-1\)
=> \(2x^2-1-2x^2=-1\)
=> -1 = -1
Vậy đa thức \(2x^2-\left(1+2x^2\right)+1\)có vô số nghiệm.
e/ Đặt \(h\left(x\right)=\left(2x-1\right)^2-16\)
Khi h (x) = 0
=> \(\left(2x-1\right)^2-16=0\)
=> \(\left(2x-1\right)^2=16\)
=> \(2x-1=4\)
=> 2x = 5
=> \(x=\frac{5}{2}\)
Vậy đa thức \(\left(2x-1\right)^2-16\)có nghiệm là \(\frac{5}{2}\).
![](https://rs.olm.vn/images/avt/0.png?1311)
b) \(3^{x+1}=9^x\)
\(3^{x+1}=\left(3^2\right)^x\) c)
\(3^{x+1}=3^{2x}\)
\(\Rightarrow x+1=2x\)
\(1=2x-x\)
\(1=x\)
Vậy x=1
![](https://rs.olm.vn/images/avt/0.png?1311)
Bài 1: (1/2x - 5)20 + (y2 - 1/4)10 < 0 (1)
Ta có: (1/2x - 5)20 \(\ge\)0 \(\forall\)x
(y2 - 1/4)10 \(\ge\)0 \(\forall\)y
=> (1/2x - 5)20 + (y2 - 1/4)10 \(\ge\)0 \(\forall\)x;y
Theo (1) => ko có giá trị x;y t/m
Bài 2. (x - 7)x + 1 - (x - 7)x + 11 = 0
=> (x - 7)x + 1.[1 - (x - 7)10] = 0
=> \(\orbr{\begin{cases}\left(x-7\right)^{x+1}=0\\1-\left(x-7\right)^{10}=0\end{cases}}\)
=> \(\orbr{\begin{cases}x-7=0\\\left(x-7\right)^{10}=1\end{cases}}\)
=> x = 7
hoặc : \(\orbr{\begin{cases}x-7=1\\x-7=-1\end{cases}}\)
=> x = 7
hoặc : \(\orbr{\begin{cases}x=8\\x=6\end{cases}}\)
Bài 3a) Ta có: (2x + 1/3)4 \(\ge\)0 \(\forall\)x
=> (2x +1/3)4 - 1 \(\ge\)-1 \(\forall\)x
=> A \(\ge\)-1 \(\forall\)x
Dấu "=" xảy ra <=> 2x + 1/3 = 0 <=> 2x = -1/3 <=> x = -1/6
Vậy Min A = -1 tại x = -1/6
b) Ta có: -(4/9x - 2/5)6 \(\le\)0 \(\forall\)x
=> -(4/9x - 2/15)6 + 3 \(\le\)3 \(\forall\)x
=> B \(\le\)3 \(\forall\)x
Dấu "=" xảy ra <=> 4/9x - 2/15 = 0 <=> 4/9x = 2/15 <=> x = 3/10
vậy Max B = 3 tại x = 3/10
![](https://rs.olm.vn/images/avt/0.png?1311)
1. Ta có \(|3x-1|=\frac{1}{2}\)
\(\Rightarrow\)\(\orbr{\begin{cases}3x-1=\frac{1}{2}\\3x-1=-\frac{1}{2}\end{cases}}\)
\(\Rightarrow\)\(\orbr{\begin{cases}x=(\frac{1}{2}+1):3\\x=(-\frac{1}{2}+1):3\end{cases}}\)
\(\Rightarrow\)\(\orbr{\begin{cases}x=\frac{1}{2}\\x=\frac{1}{6}\end{cases}}\)
Sau đó tự thay x vào đa thức theo 2 trường hợp trên nha
Sai thì thôi nha bn mik cx chưa lm dạng này bh
Câu 1:
\(A\left(x\right)=6x^4-4x^2-3+9x+5x^2-7x-2x^4+4-2x-4x^4\)
\(=\left(6x^4-2x^4-4x^4\right)+\left(-4x^2+5x^2\right)+\left(-7x-2x\right)+9x+\left(-3+4\right)\)
\(=x^2+9x+1\)
Ta có: \(\left|3x-1\right|=\frac{1}{2}\)
TH1: \(3x-1=\frac{1}{2}\Rightarrow3x=\frac{1}{2}+1=\frac{3}{2}\Rightarrow x=\frac{3}{2}:3=\frac{1}{2}\)
\(A\left(\frac{1}{2}\right)=\left(\frac{1}{2}\right)^2+9\cdot\frac{1}{2}+1=\frac{1}{4}+\frac{9}{2}+1=\frac{23}{4}\)
TH2: \(3x-1=\frac{-1}{2}\Rightarrow3x=\frac{-1}{2}+1=\frac{1}{2}\Rightarrow x=\frac{1}{2}:3=\frac{1}{6}\)
\(A\left(\frac{1}{6}\right)=\left(\frac{1}{6}\right)^2+9\cdot\frac{1}{6}+1=\frac{91}{36}\)
![](https://rs.olm.vn/images/avt/0.png?1311)
a/ \(\left(2x-4\right)^4=81\)
\(\Leftrightarrow\left[{}\begin{matrix}\left(2x-4\right)^4=3^4\\\left(2x-4\right)^4=\left(-3\right)^4\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}2x-4=3\\2x-4=-3\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}2x=7\\2x=1\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{7}{2}\\x=\dfrac{1}{2}\end{matrix}\right.\)
Vậy .......
b/ \(\left(x-1\right)^5=-32\)
\(\Leftrightarrow\left(x-1\right)^5=\left(-2\right)^5\)
\(\Leftrightarrow x-1=-2\)
\(\Leftrightarrow x=-1\)
Vậy ............
a) \(\left(2x-4\right)^4=81\\ \left(2x-4\right)^4=3^4\\\Rightarrow2x-4=3\\ 2x=3+4\\ 2x=7\\ x=7:2\\ x=\dfrac{7}{2} \)
Vậy \(x=\dfrac{7}{2}\)
b) \(\left(x-1\right)^5=-32\\ \left(x-1\right)^5=\left(-2\right)^5\\ \Rightarrow x-1=-2\\ x=-2+1\\ x=-1\)
Vậy \(x=-1\)
c) \(\left(2x-1\right)^6=\left(2x-1\right)^8\\ \)
Suy ra không tìm được x
![](https://rs.olm.vn/images/avt/0.png?1311)
a ) \(\left(2x-1\right)^4=81\)
\(\Leftrightarrow\left(2x-1\right)^4=3^4\)
\(\Leftrightarrow2x-1=3\)
\(\Leftrightarrow x=2\)
Vậy \(x=2.\)
b ) \(\left(x-1\right)^5=-32\)
\(\Leftrightarrow\) \(\left(x-1\right)^5=-2^5\)
\(\Leftrightarrow x-1=-2\)
\(\Leftrightarrow x=-1\)
Vậy \(x=-1.\)
c ) \(\left(2x-1\right)^6=\left(2x-1\right)^8\)
\(\Leftrightarrow\left(2x-1\right)^6-\left(2x-1\right)^8=0\)
\(\Leftrightarrow\left(2x-1\right)^6\left[1-\left(2x-1\right)^2\right]=0\)
\(\Leftrightarrow\left(2x-1\right)^6\left[\left(1-2x+1\right)\left(1+2x-1\right)\right]=0\)
\(\Leftrightarrow\left(2x-1\right)^6\left[\left(2-2x\right).2x\right]=0\)
\(\Leftrightarrow\left[{}\begin{matrix}\left(2x-1\right)^6=0\\2-2x=0\\2x=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}2x-1=0\\2x=2\\x=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{1}{2}\\x=1\\x=0\end{matrix}\right.\)
Vậy ...............
a) (2x-1)4=81
\(\Leftrightarrow\)\(\left[\begin{array}{} (2x-1)^4=(3)^4\\ (2x-1)^4=(-3)^4 \end{array}\right.\)
\(\Rightarrow\)\(\left[\begin{array}{} 2x-1=3\\ 2x-1=-3 \end{array}\right.\)
\(\Rightarrow\)\(\left[\begin{array}{} 2x=3+1\\ 2x=-3+1 \end{array}\right.\)
\(\Rightarrow\)\(\left[\begin{array}{} 2x=4\\ 2x=-2 \end{array}\right.\)
\(\Rightarrow\)\(\left[\begin{array}{} x=4:2\\ x=-2:2 \end{array}\right.\)
\(\Rightarrow\)\(\left[\begin{array}{} x=2\\ x=-1 \end{array}\right.\)
Vậy x=2 hoặc x=-1
b) (x-1)5= -32
\(\Leftrightarrow\)\( (x-1)^5=(-2)^5 \)
\(\Rightarrow\)\( (x-1)=-2 \)
\(\Rightarrow\)\( x=-2+1 \)
\(\Rightarrow\)\( x=-1 \)
Vậy x=-1
c) ( 2x-1)6= ( 2x-1)8
\(\Leftrightarrow\) (2x-1)6=(2x-1)8.
\(\Leftrightarrow\)(2x-1)8-(2x-1)6=0.
\(\Leftrightarrow\)(2x-1)6)[(2x-1)2-1]=0.
\(\Leftrightarrow\)(2x-1)6(2x-1+1)(2x+1+1)=0.
\(\Leftrightarrow\)(2x-1)62x(2x+2)=0.
\(\Leftrightarrow\)(2x-1)6<=>2x(2x-1)=0.\(\Rightarrow x=\dfrac{1}{2}\)
hoặc 2x=0\(\Rightarrow\)x=0
hoặc 2x+2=0\(\Rightarrow\)2x=-2\(\Leftrightarrow\)x=-2:2\(\Leftrightarrow\)x=-1
Vậy x=\(\dfrac{1}{2}\)hoặc x=0 hoặc x=-1
Chúc bạn học tốt !!!
![](https://rs.olm.vn/images/avt/0.png?1311)
a)(2x-3)2=16
=>2x-3=4 hoặc 2x-3=-4
<=>2x=7 hoặc 2x=-1
<=>x=7/2 hoặc x=-1/2
b)(3x-2)5=243=35
=>3x-2=3
=>3x=5
=>x=5/3
c)(7x+2)-1=52
<=>\(\frac{1}{7x+2}=25\)
<=>25(7x+2)=1
<=>175x+50=1
<=>175x=-49
<=>x=-49:175
<=>x=-7/25
d)(x-3/4)4=81=34=(-3)4
=>x-3/4=3 hoặc x-3/4=-3
<=>x=3+3/4 hoặc x=-3+3/4
<=>x=15/4 hoặc x=-9/4
a) (2x-1)4 = 16
=> (2x-1)4 = 24 hoặc (-2)4
=>\(\left[{}\begin{matrix}2x-1=2\\2x-1=-2\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}2x=2+1\\2x=-2+1\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=\dfrac{3}{2}\\x=\dfrac{-1}{2}\end{matrix}\right.\)
b) (2x+1)4 = (2x+1)6
=> (2x+1)4 = (2x+1)4+2
=> (2x+1)4 = (2x+1)4 . (2x+1)2
=> (2x+1)4 - (2x+1)4 . (2x+1)2 = 0
=> (2x+1)4 . [1 - (2x+1)2] = 0
\(\left[{}\begin{matrix}\left(2x+1\right)^4=0\\1-\left(2x+1\right)^2=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}2x+1=0\\2x+1=1\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=\dfrac{-1}{2}\\x=0\end{matrix}\right.\)