Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(a,x^3-13x=0\)
\(x.\left(x^2-13\right)=0\)
\(\Rightarrow\orbr{\begin{cases}x=0\\x^2=13\end{cases}\Rightarrow\orbr{\begin{cases}x=0\\x=\sqrt{13}\end{cases}}}\)
\(b,2-25x^2=0\)
\(\Rightarrow25x^2=2\Rightarrow x^2=\frac{2}{25}\Rightarrow x=\sqrt{\frac{2}{25}}\)
\(c,x^2-x+\frac{1}{4}=0\)
\(\left(x-\frac{1}{2}\right)^2=0\Rightarrow x=\frac{1}{2}\)
a, x 3 - 13 x = 0
=> x ( x 2 - 13 ) = 0
=> \(\orbr{\begin{cases}x=0\\x^2=13\end{cases}\Rightarrow[\begin{cases}x=0\\x=\sqrt{13}\\x=-\sqrt{13}\end{cases}}\)
b, 2 - 25 x 2 = 0
=> 25 x 2 = 2
=> x 2 = 0,08
=> \(\orbr{\begin{cases}x=\frac{\sqrt{2}}{5}\\x=\frac{-\sqrt{2}}{5}\end{cases}}\)
x, x 2 - x + \(\frac{1}{4}\)= 0
=> \(\left(x-\frac{1}{2}\right)^2=0\)
=> \(x-\frac{1}{2}=0\)
=> \(x=\frac{1}{2}\)
a) \(x^2-16=0\Rightarrow x^2=16\Rightarrow x^2=\pm4\)
b) \(4x^2-9=0\Rightarrow\left(2x-3\right)\left(2x+3\right)=0\Rightarrow x=\pm1,5\)
c) \(25x^2-1=0\Rightarrow\left(5x-1\right)\left(5x+1\right)=0\Rightarrow x=\pm0,2\)
d) \(4\left(x-1\right)^2-9=0\Rightarrow\left(2x-2-3\right)\left(2x-2+3\right)=0\Rightarrow\left[{}\begin{matrix}2x-5=0\Rightarrow x=2,5\\2x+1=0\Rightarrow x=-0,5\end{matrix}\right.\)
e) \(25x^2-\left(5x+1\right)^2=0\Rightarrow\left(5x+5x+1\right)\left(5x-5x-1\right)=0\Rightarrow10x+1=0\Rightarrow x=-0,1\)
f) \(\dfrac{1}{4}-9\left(x-1\right)^2=0\Rightarrow\left(\dfrac{1}{2}+3x-3\right)\left(\dfrac{1}{2}-3x+3\right)=0\Rightarrow\left[{}\begin{matrix}x=\dfrac{5}{6}\\x=\dfrac{7}{6}\end{matrix}\right.\)
g) \(\dfrac{1}{16}-\left(2x+\dfrac{3}{4}\right)^2=0\Rightarrow\left(\dfrac{1}{4}+2x+\dfrac{3}{4}\right)\left(\dfrac{1}{4}-2x-\dfrac{3}{4}\right)=0\Rightarrow\left[{}\begin{matrix}x=-0,5\\x=-0,25\end{matrix}\right.\)
h) \(\dfrac{1}{9}x^2-\dfrac{2}{3}x+1=0\Rightarrow\left(\dfrac{1}{3}x-1\right)^2=0\Rightarrow\dfrac{1}{3}x=1\Rightarrow x=3\)
k) \(4\left(x-3\right)^2-\left(2-3x\right)^2=0\Rightarrow\left(2x-6+2-3x\right)\left(2x-6-2+3x\right)=0\Rightarrow\left[{}\begin{matrix}-x-4=0\Rightarrow x=-4\\5x-8=0\Rightarrow x=1,6\end{matrix}\right.\)
l) \(x^2-x-12=0\Rightarrow x^2-4x+3x-12=0\Rightarrow x\left(x-4\right)+3\left(x-4\right)=0\Rightarrow\left(x+3\right)\left(x-4\right)=0\Rightarrow\left[{}\begin{matrix}x=-3\\x=4\end{matrix}\right.\)
c, \(\left(x-\dfrac{1}{2}\right)^2=0\)
<=>x-\(\dfrac{1}{2}\)=0
<=> x=\(\dfrac{1}{2}\)
a: =>x(x^2-13)=0
=>\(x\in\left\{0;\sqrt{13};-\sqrt{13}\right\}\)
b: =>25x^2=2
=>x^2=2/25
hay \(x=\pm\dfrac{\sqrt{2}}{5}\)
a) \(4.\left(x-1\right)^2-9=0\)
\(\Rightarrow4.\left(x-1\right)^2=9\)
\(\Rightarrow\left(x-1\right)^2=9:4=\dfrac{9}{4}=\left(\pm\dfrac{3}{2}\right)^2\)
\(\Rightarrow x-1=\pm\dfrac{3}{2}\)
\(\Rightarrow\left[{}\begin{matrix}x-1=\dfrac{3}{2}\\x-1=\dfrac{-3}{2}\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=\dfrac{5}{2}\\x=\dfrac{-1}{2}\end{matrix}\right.\)
vậy\(\left[{}\begin{matrix}x=\dfrac{5}{2}\\x=\dfrac{-1}{2}\end{matrix}\right.\)
b) \(\dfrac{1}{4}-9.\left(x-1\right)^2=0\)
\(\Rightarrow9.\left(x-1\right)^2=\dfrac{1}{4}\)
\(\Rightarrow\left(x-1^2\right)=\dfrac{1}{36}=(\pm\dfrac{1}{6})^2\)
\(\Rightarrow x-1=\pm\dfrac{1}{6}\)
\(\Rightarrow\left[{}\begin{matrix}x-1=\dfrac{1}{6}\\x-1=\dfrac{-1}{6}\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=\dfrac{7}{6}\\x=\dfrac{5}{6}\end{matrix}\right.\)
vậy \(\left[{}\begin{matrix}x=\dfrac{7}{6}\\x=\dfrac{5}{6}\end{matrix}\right.\)
e) \(\dfrac{1}{16}-\left(2x+\dfrac{3}{4}\right)^2=0\)
\(\Rightarrow\left(2x+\dfrac{3}{4}\right)^2=\dfrac{1}{16}=\left(\pm\dfrac{1}{4}\right)^2\)
\(\Rightarrow2x+\dfrac{3}{4}=\pm\dfrac{1}{4}\)
\(\Rightarrow\)\(\left[{}\begin{matrix}2x+\dfrac{3}{4}=\dfrac{1}{4}\\2x+\dfrac{3}{4}=\dfrac{-1}{4}\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=\dfrac{-1}{4}\\x=\dfrac{-1}{2}\end{matrix}\right.\)
vậy \(\left[{}\begin{matrix}x=\dfrac{-1}{4}\\x=\dfrac{-1}{2}\end{matrix}\right.\)
a)(x+1)(x2+2x)=(x+1)x(x+2)=0
\(=>\left\{{}\begin{matrix}x+1=0=>x=-1\\x=0\\x+2=0=>x=-2\end{matrix}\right.\)
b)x(3x-2)-5(2-3x)=x(3x-2)+5(3x-2)=(3x-2)(x+5)=0
\(=>\left\{{}\begin{matrix}3x-2=0=>x=\dfrac{2}{3}\\x+5=0=>x=-5\end{matrix}\right.\)
c)\(\dfrac{4}{9}-25x^2=\left(\dfrac{2}{3}\right)^2-\left(5x\right)^2=\left(\dfrac{2}{3}-5x\right)\left(\dfrac{2}{3}+5x\right)\)
=0
\(=>\left\{{}\begin{matrix}\dfrac{2}{3}-5x=0=>x=\dfrac{2}{15}\\\dfrac{2}{3}+5x=0=>x=\dfrac{-2}{15}\end{matrix}\right.\)
d)\(x^2-x+\dfrac{1}{4}=x^2-2.\dfrac{1}{2}.x+\left(\dfrac{1}{2}\right)^2=\left(x-\dfrac{1}{2}\right)^2=0\)
\(=>x-\dfrac{1}{2}=0=>x=\dfrac{1}{2}\)
Bài làm :
\(a\text{)}3x^2+4x=0\Leftrightarrow x\left(3x+4\right)=0\Leftrightarrow\orbr{\begin{cases}x=0\\3x+4=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=0\\x=-\frac{4}{3}\end{cases}}\)
\(b\text{)}25x^2-0,64=0\Leftrightarrow\left(5x-0,8\right)\left(5x+0,8\right)=0\Leftrightarrow\orbr{\begin{cases}5x-0,8=0\\5x+0,8=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=0,16\\-0,16\end{cases}}\)
\(c\text{)}x^4-16x^2=0\Leftrightarrow\left(x^2-4x\right)\left(x^2+4x\right)=0\Leftrightarrow\orbr{\begin{cases}x^2-4x=0\\x^2+4x=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x\left(x-4\right)=0\\x\left(x+4\right)=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=0\\x=\pm4\end{cases}}\)
\(d\text{)}x^2+x=6\Leftrightarrow x^2+x-6=0\Leftrightarrow\left(x^2-2x\right)+\left(3x-6\right)=0\Leftrightarrow x\left(x-2\right)+3\left(x-2\right)=0\Leftrightarrow\left(x+3\right)\left(x-2\right)=0\Leftrightarrow\orbr{\begin{cases}x+3=0\\x-2=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=-3\\x=2\end{cases}}\)
Bài làm :
\(a)3x^2+4x=0\)
\(\Rightarrow x\left(3x+4\right)=0\)
\(\Rightarrow\orbr{\begin{cases}x=0\\3x+4=0\end{cases}}\Rightarrow\orbr{\begin{cases}x=0\\x=\frac{-4}{3}\end{cases}}\)
Vậy x = 0 hoặc \(x=\frac{-4}{3}\) .
\(b)25x^2-0,64=0\)
\(\Rightarrow\left(5x\right)^2=\frac{16}{25}\)
\(\Rightarrow\left(5x\right)^2=\left(\frac{4}{5}\right)^2\)
\(\Rightarrow\orbr{\begin{cases}5x=\frac{4}{5}\\5x=\frac{-4}{5}\end{cases}}\Rightarrow\orbr{\begin{cases}x=\frac{4}{25}\\x=\frac{-4}{25}\end{cases}}\)
Vậy \(x=\frac{4}{25}\) hoặc \(x=\frac{-4}{25}\) .
\(c)x^4-16x^2=0\)
\(\Rightarrow x^2\left(x^2-16\right)=0\)
\(\Rightarrow\orbr{\begin{cases}x^2=0\\x^2-16=0\end{cases}}\Rightarrow\orbr{\begin{cases}x=0\\x^2=4^2\end{cases}}\Rightarrow\orbr{\begin{cases}x=0\\x=\pm4\end{cases}}\)
Vậy x = 0 hoặc \(x=\pm4\) .
a) \(25x^2-9=0\)
\(\Leftrightarrow\left(5x\right)^2-3^2=0\)
\(\Leftrightarrow\left(5x+3\right)\left(5x-3\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}5x-3=0\\5x+3=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=\frac{3}{5}\\x=-\frac{3}{5}\end{cases}}\)
Vậy \(S=\left\{\frac{3}{5};\frac{-3}{5}\right\}\)
b) \(\left(x+4\right)^2-\left(x+1\right)\left(x-1\right)=16\)
\(\Leftrightarrow\left(x^2+8x+16\right)-\left(x^2-1\right)=16\)
\(\Leftrightarrow x^2+8x+16-x^2+1=16\)
\(\Leftrightarrow8x+17=16\)
\(\Leftrightarrow8x=-1\)
\(\Leftrightarrow x=-\frac{1}{8}\)
Vậy.........
c)\(\left(2x-1\right)^2+\left(x+3\right)^2-5\left(x+7\right)\left(x-7\right)=0\)
\(\Leftrightarrow\left(4x^2-4x+1\right)+\left(x^2+6x+9\right)-5\left(x^2-49\right)=0\)
\(\Leftrightarrow4x^2-4x+1+x^2+6x+9-5x^2+245=0\)
\(\Leftrightarrow2x=-255\)
\(\Leftrightarrow x=-127,5\)
Vậy.............
có j sai xót mong m.n bỏ qua☺
a) \(25x^2-9=0\)
<=> \(\left(5x\right)^2=9\)
<=> \(\left(5x\right)^2=3^2\)
<=> \(5x=3\)
<=> \(x=\frac{3}{5}\)
b) \(\left(x+4\right)^2-\left(x-1\right)\left(x+1\right)=16\)
<=> \(x^2+2.x.4+4^2-\left(x^2-1^2\right)=16\)
<=> \(x^2+8x+16-x^2+1=16\)
<=> \(\left(x^2-x^2\right)+8x+\left(16+1\right)=16\)
<=> \(8x+17=16\)
<=> \(8x=-1\)
<=> \(x=\frac{-1}{8}\)
c) \(\left(2x-1\right)^2+\left(x+3\right)^2-5\left(x+7\right)\left(x-7\right)=0\)
<=> \(\left(2x\right)^2-2.2x.1+1^2+x^2+2.x.3+3^2-5\left(x^2-7^2\right)=0\)
<=> \(4x^2-4x+1+x^2+6x+9-5x^2+5.7^2=0\)
<=> \(\left(4x^2+x^2-5x^2\right)-\left(4x-6x\right)+\left(1+9+5.7^2\right)=0\)
<=> \(2x+245=0\)
<=> \(2x=-245\)
<=> \(x=\frac{-245}{2}\)
Bài giải:
a) 2 – 25x2 = 0 => (√2)2 – (5x)2 = 0
=> (√2 – 5x)( √2 + 5x) = 0
Hoặc √2 – 5x = 0 => 5x = √2 => x = √2525
Hoặc √2 + 5x = 0 => 5x = -√2 => x = - √2525
b) x2 - x + 1414 = 0 => x2 – 2 . x . 1212 + (1212)2 = 0
=> (x - 1212)2 = 0 => x - 1212 = 0 => x = 12
a) 2-25x2=0
<=>-25x2=-2
<=>25x2=2
<=>x2=\(\dfrac{2}{25}\)
<=>x=\(\sqrt{\dfrac{2}{25}}\)
b)x2-x +\(\dfrac{1}{4}\) =0
<=>(x - \(\dfrac{1}{2}\))2 = 0
<=> x-\(\dfrac{1}{2}\) =0
<=>x=\(\dfrac{1}{2}\)