K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 7 2018

điều kiện: x - 1 ≥ 0 ⇔ x ≥ 1 (*)

Để học tốt Toán 9 | Giải bài tập Toán 9

x = 50 thỏa mãn điều kiện (*) nên x = 50 là nghiệm của phương trình.

19 tháng 8 2016
A^2 = x + y - 3 + 2√[(x - 2)(y - 3)] <= 1 + (x + y - 3) = 2 vậy A max là √2 khi x = 1,5; y = 2,5
19 tháng 8 2016
Hai cái còn lại làm tương tự
31 tháng 3 2017

a) \(\sqrt{16x}=8\)

\(\Leftrightarrow\sqrt{16x}^2=8^2\)

\(\Leftrightarrow16x=64\Rightarrow x=\dfrac{64}{16}=4\)

b) \(\sqrt{4x}=\sqrt{5}\)

\(\Leftrightarrow\sqrt{4x}^2=\sqrt{5}^2\)

\(\Rightarrow4x=5\Rightarrow x=\dfrac{5}{4}\)

c) \(\sqrt{9\left(x-1\right)}=21\)

\(\Leftrightarrow\sqrt{9\left(x-1\right)}^2=21^2\)

\(\Leftrightarrow9\left(x-1\right)=441\)

\(\Leftrightarrow x-1=49\rightarrow x=50\)

d) \(\sqrt{4\left(1-x\right)^2}-6=0\)

\(\Leftrightarrow\sqrt{4\left(1-x\right)^2}^2=6^2\)

\(\Leftrightarrow4\left(1-x\right)^2=36\)

\(\Leftrightarrow\left(1-x\right)^2=9\)

\(\Rightarrow\left[{}\begin{matrix}x=-2\\x=4\end{matrix}\right.\)

31 tháng 3 2017

a) Điều kiện x ≥ 0.

= 8 16x = 64 x = 4.

b) ĐS: x = .

c) ĐS: x = 50.

d) Điều kiện: Vì ≥ 0 với mọi giá trị của x nên có nghĩa với mọi giá trị của x.

- 6 = 0 √4. - 6 = 0

2.│1 - x│= 6 │1 - x│= 3.

Ta có 1 - x ≥ 0 khi x ≤ 1. Do đó:

khi x ≤ 1 thì │1 - x│ = 1 - x.

khi x > 1 thì │1 - x│ = x -1.

Để giải phương trình │1 - x│= 3, ta phải xét hai trường hợp:

- Khi x ≤ 1, ta có: 1 - x = 3 x = -2.

Vì -2 < 1 nên x = -2 là một nghiệm của phương trình.

- Khi x > 1, ta có: x - 1 = 3 x = 4.

Vì 4 > 1 nên x = 4 là một nghiệm của phương trình.

Vậy phương trình có hai nghiệm là x = -2 và x = 4.

18 tháng 6 2017

\(\frac{x-241}{17}+\frac{x-220}{19}+\frac{x-195}{21}+\frac{x-166}{23}=10\)

\(\Leftrightarrow\left(\frac{x-241}{17}-1\right)+\left(\frac{x-220}{19}-2\right)+\left(\frac{x-195}{21}-3\right)+\left(\frac{x-166}{23}-4\right)=0\)

\(\Leftrightarrow\frac{x-258}{17}+\frac{x-258}{19}+\frac{x-258}{21}+\frac{x-258}{23}=0\)

\(\Leftrightarrow\left(x-258\right)\left(\frac{1}{17}+\frac{1}{19}+\frac{1}{21}+\frac{1}{23}\right)=0\)

\(\Leftrightarrow x-258=0\)(vì \(\frac{1}{17}+\frac{1}{19}+\frac{1}{21}+\frac{1}{23}\ne0\))

\(\Leftrightarrow x=258\)

vậy phương trình có tập nghiệm là: S={258}

11 tháng 6 2019

\(f,\sqrt{x^2-25}-\sqrt{x-5}=0\)

=> \(\sqrt{x^2-25}=\sqrt{x-5}\)

=>\(x^2-25=x-5\)

=>\(x^2-x=25-5=20\)

=>( đến đoạn này mình xin chịu )

11 tháng 6 2019

\(a,\sqrt{16x}=8\)

=>\(16x=8^2\)

=>\(16x=64\)

=>\(x=64:16=4\)

Vậy \(x\in\left\{4\right\}\)

\(b,\sqrt{x^2}=2x-1\)

=>\(x=2x-1\)

=>\(2x-x=1\)

=>\(x=1\)

Vậy \(x\in\left\{1\right\}\)

\(c,\sqrt{9.\left(x-1\right)}=21\)

=>\(9.\left(x-1\right)=21^2=441\)

=> \(x-1=441:9=49\)

=>\(x=49+1=50\)

Vậy \(x\in\left\{50\right\}\)

\(d,\sqrt{4\left(1-x\right)^2}-6=0\)

=>\(\sqrt{4\left(1-x\right)^2}=0+6=6\)

=> \(4\left(1-x\right)^2=6^2=36\)

=>\(\left(1-x\right)^2=36:4=9\)

=>\(1-x=\sqrt{9}=3\)

=>\(x=1-3=-2\)

Vậy \(x\in\left\{-2\right\}\)

\(g,\sqrt{9\left(2-3x\right)^2}=6\)

=> \(9.\left(2-3x\right)^2=6^2=36\)

=> \(\left(2-3x\right)^2=36:9=4\)

=> \(2-3x=\sqrt{4}=2\)

=>\(3x=2-2=0\)

=>\(x=0:3=0\)

Vậy \(x\in\left\{0\right\}\)

( còn các bài còn lại mình sẽ nghĩ tiếp , HS6-7 làm bài )

6 tháng 8 2020

Ta có: \(B=\frac{\sqrt{\frac{1}{9}}-3}{\sqrt{\frac{1}{9}}-1}\)

\(B=\frac{\frac{1}{3}-3}{\frac{1}{3}-1}\)

\(B=\frac{-\frac{8}{3}}{-\frac{2}{3}}=4\)

6 tháng 8 2020

đkxđ: \(\hept{\begin{cases}x\ne1\\x\ne25\end{cases}}\)

Ta có:  

\(A=\frac{x-21}{x-6\sqrt{x}+5}+\frac{1}{\sqrt{x}-1}+\frac{1}{5-\sqrt{x}}\)

\(A=\frac{x-21}{\left(\sqrt{x}-1\right)\left(\sqrt{x}-5\right)}+\frac{1}{\sqrt{x}-1}-\frac{1}{\sqrt{x}-5}\)

\(A=\frac{x-21+\sqrt{x}-5-\sqrt{x}+1}{\left(\sqrt{x}-1\right)\left(\sqrt{x}-5\right)}\)

\(A=\frac{x-25}{\left(\sqrt{x}-1\right)\left(\sqrt{x}-5\right)}\)

\(A=\frac{\left(\sqrt{x}-5\right)\left(\sqrt{x}+5\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}-5\right)}\)

\(A=\frac{\sqrt{x}+5}{\sqrt{x}-1}\)

8 tháng 11 2017

a) Đặt \(\sqrt{x}=a\)                 \(ĐKXĐ:x\ge9\)

           \(\sqrt{x-9}=b\)

Ta có \(\hept{\begin{cases}2a^2+b=21\\a^2-b^2=9\end{cases}\Rightarrow\hept{\begin{cases}2a^2+b=21\\a^2=9+b^2\end{cases}}}\)

Thay \(a^2=9+b^2\)vào\(2a^2+b=21\), ta có:

\(2b^2+18+b=21\)

\(\Leftrightarrow2b^2+b-3=0\)

\(\Leftrightarrow\left(2b^2-2b\right)+\left(3b-3\right)=0\)

\(\Leftrightarrow\left(b-1\right)\left(2b+3\right)=0\)

\(\Rightarrow\orbr{\begin{cases}b-1=0\\2b+3=0\end{cases}\Rightarrow\orbr{\begin{cases}b=1\\2b=-3\end{cases}\Rightarrow}\orbr{\begin{cases}\sqrt{x-9}=1\\2\sqrt{x-9}=-3\end{cases}}}\)

Mà \(\sqrt{x-9}\ge0\), suy ra 

\(\sqrt{x-9}=1\)

\(\Rightarrow x-9=1\)

\(\Leftrightarrow x=10\)(thỏa mãn)

Vậy \(x=10\)

NV
25 tháng 5 2019

\(\sqrt{4x^2}=6\Rightarrow\left|2x\right|=6\Rightarrow\left[{}\begin{matrix}2x=6\\2x=-6\end{matrix}\right.\) \(\Rightarrow x=\pm3\)

b/ ĐKXĐ: \(x\ge0\)

\(\sqrt{16x}=8\Leftrightarrow16x=64\Rightarrow x=4\)

c/ ĐKXĐ: \(x\ge1\)

\(\sqrt{9\left(x-1\right)}=21\Leftrightarrow\sqrt{x-1}=7\Leftrightarrow x-1=49\Rightarrow x=50\)

d/ \(\sqrt{4\left(1-x\right)^2}=6\Leftrightarrow2\left|1-x\right|=6\Leftrightarrow\left|1-x\right|=3\Rightarrow\left[{}\begin{matrix}x=-2\\x=4\end{matrix}\right.\)

e/ \(\sqrt{1-4x+4x^2}=5\Leftrightarrow\sqrt{\left(2x-1\right)^2}=5\Leftrightarrow\left[{}\begin{matrix}2x-1=5\\2x-1=-5\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}x=3\\x=-2\end{matrix}\right.\)

f/ĐKXĐ: \(x\ge-\frac{1}{2}\)

\(\sqrt{9x^2}=2x+1\Leftrightarrow\left|3x\right|=2x+1\Leftrightarrow\left[{}\begin{matrix}3x=2x+1\\-3x=2x+1\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}x=1\\x=-\frac{1}{5}\end{matrix}\right.\)