K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 10 2019

\(8x^3-50x=0\\ x\left(8x^2-50\right)=0\\ \Rightarrow\left[{}\begin{matrix}x=0\\8x^2=50\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=0\\x=\frac{5}{2}\end{matrix}\right.\)

Vậy \(x\in\left\{0;\frac{5}{2}\right\}\)

3 tháng 10 2019
https://i.imgur.com/XFpRV7B.jpg
29 tháng 9 2016

làm thế nào zợ

12 tháng 4 2017

8x3=50x

đoạn sau tự tìm đi!!!

29 tháng 10 2020

8x3 - 50x = 0

⇔ 2x( 4x2 - 25 ) = 0

⇔ 2x( 2x - 5 )( 2x + 5 ) = 0

⇔ 2x = 0 hoặc 2x - 5 = 0 hoặc 2x + 5 = 0

⇔ x = 0 hoặc x = ±5/2

( x + 3 )2 = 9( 2x - 1 )2

⇔ ( x + 3 )2 - 32( 2x - 1 )2 = 0

⇔ ( x + 3 )2 - [ 3( 2x - 1 ) ]2 = 0

⇔ ( x + 3 )2 - ( 6x - 3 )2 = 0

⇔ ( x + 3 - 6x + 3 )( x + 3 + 6x - 3 ) = 0

⇔ ( -5x + 6 ).7x = 0

⇔ -5x + 6 = 0 hoặc 7x = 0

⇔ x = 6/5 hoặc x = 0

29 tháng 10 2020

\(8x^3-50x=0\)   

\(2x\left(4x^2-25\right)=0\)   

\(\orbr{\begin{cases}2x=0\\4x^2-25=0\end{cases}}\)   

\(\orbr{\begin{cases}x=0\\x^2=\frac{25}{4}\end{cases}}\)   

\(\orbr{\begin{cases}x=0\\x=\pm\sqrt{\frac{25}{4}}\end{cases}}\)   

\(\orbr{\begin{cases}x=0\\x=\pm\frac{5}{2}\end{cases}}\)   

\(\left(x+3\right)^2=9\left(2x-1\right)^2\)   

\(x^2+6x+9=9\left(4x^2-4x+1\right)\)   

\(x^2+6x+9=36x^2-36x+9\)    

\(0=36x^2-36x+9-x^2-6x-9\)   

\(0=35x^2-42x\)   

\(35x^2-42x=0\)   

\(7x\left(5x-6\right)=0\)   

\(\orbr{\begin{cases}7x=0\\5x-6=0\end{cases}}\)   

\(\orbr{\begin{cases}x=0\\x=\frac{6}{5}\end{cases}}\)

27 tháng 5 2018

a) 2x(x - 3) + 5(x - 3) = 0 ⇔ (x - 3)(2x + 5) = 0 ⇔ x - 3 = 0 hoặc 2x + 5 = 0

1) x - 3 = 0 ⇔ x = 3

2) 2x + 5 = 0 ⇔ 2x = -5 ⇔ x = -2,5

Vậy tập nghiệm của phương trình là S = {3;-2,5}

b) (x2 - 4) + (x - 2)(3 - 2x) = 0 ⇔ (x - 2)(x + 2) + (x - 2)(3 - 2x) = 0

⇔ (x - 2)(x + 2 + 3 - 2x) = 0 ⇔ (x - 2)(-x + 5) = 0 ⇔ x - 2 = 0 hoặc -x + 5 = 0

1) x - 2 = 0 ⇔ x = 2

2) -x + 5 = 0 ⇔ x = 5

Vậy tập nghiệm của phương trình là S = {2;5}

c) x3 – 3x2 + 3x – 1 = 0 ⇔ (x – 1)3 = 0 ⇔ x = 1.

Vậy tập nghiệm của phương trình là x = 1

d) x(2x - 7) - 4x + 14 = 0 ⇔ x(2x - 7) - 2(2x - 7) = 0

                                     ⇔ (x - 2)(2x - 7) = 0 ⇔ x - 2 = 0 hoặc 2x - 7 = 0

1) x - 2 = 0 ⇔ x = 2

2) 2x - 7 = 0 ⇔ 2x = 7 ⇔ x = 72

Vậy tập nghiệm của phương trình là S = {2;72}

e) (2x – 5)2 – (x + 2)2 = 0 ⇔ (2x - 5 - x - 2)(2x - 5 + x + 2) = 0

⇔ (x - 7)(3x - 3) = 0 ⇔ x - 7 = 0 hoặc 3x - 3 = 0

1) x - 7 = 0 ⇔ x = 7

2) 3x - 3 = 0 ⇔ 3x = 3 ⇔ x = 1

Vậy tập nghiệm phương trình là: S= { 7; 1}

f) x2 – x – (3x - 3) = 0 ⇔ x2 – x – 3x + 3 = 0 

⇔ x(x - 1) - 3(x - 1) = 0 ⇔ (x - 3)(x - 1) = 0 

⇔ x = 3 hoặc x = 1

Vậy tập nghiệm của phương trình là S = {1;3}

27 tháng 10 2019

a) Ta có: \(\left(2x-1\right)^2-25=0\)

hay \(\left(2x-1\right)^2-5^2=0\)

\(\Rightarrow\left(2x-1-5\right)\left(2x-1+5\right)=0\)

\(\Rightarrow\left(2x-6\right)\left(2x+4\right)=0\)

\(\Rightarrow\left[{}\begin{matrix}2x-6=0\\2x+4=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}2x=6\\2x=-4\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=3\\x=-2\end{matrix}\right.\)

Vậy: \(x\in\left\{3;-2\right\}\)

b) Ta có: \(8x^2-50x=0\Rightarrow x\left(8x-50\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=0\\8x-50=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\8x=50\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=0\\x=\frac{50}{8}=\frac{25}{4}\end{matrix}\right.\)

Vậy: \(x\in\left\{0;\frac{25}{4}\right\}\)

c) Ta có: \(\left(x-2\right)\left(x^2+2x+7\right)+2\left(x^2-4\right)-5\left(x-2\right)=0\)

\(\Rightarrow\left(x-2\right)\left(x^2+2x+7\right)+2\left(x-2\right)\left(x+2\right)-5\left(x-2\right)=0\)

\(\Rightarrow\left(x-2\right)\left[\left(x^2+2x+7\right)+2\left(x+2\right)-5\right]=0\)

\(\Rightarrow\left(x-2\right)\left(x^2+2x+7+2x+4-5\right)=0\)

\(\Rightarrow\left(x-2\right)\left(x^2+4x+6\right)=0\)(1)

Ta có: \(x^2+4x+6=x^2+4x+4+2=\left(x+2\right)^2+2\)

\(\left(x+2\right)^2\ge0\forall x\)

nên \(\left(x+2\right)^2+2\ge2>0\forall x\)

nên \(x^2+4x+6=0\) là điều vô lý (2)

Từ (1) và (2) suy ra

\(x-2=0\Leftrightarrow x=2\)

Vậy: x=2

Thanks bn

5 tháng 8 2016

1,

<=> \(\left(x-1\right)\left(x-2\right)^2=0\)

=> x=1 hoặc x=2

2, 

<=>\(\left(x+1\right)\left(2x^2-3x+6\right)\)=0

=> x=-1

18 tháng 7 2017

1.

<=> ( x -1 ) ( x - 2 ) 2 = 0

=> x = 1 hoặc x = 2

2.

<=> ( x + 1 ) ( 2x2 - 3x + 6 ) = 0

=> x = -1