Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(x^3-5x^2+8x-4=0\Leftrightarrow x^3-x^2-4x^2+4x+4x-4=0\Leftrightarrow x^2\left(x-1\right)-4x\left(x-1\right)+4\left(x-1\right)=0\Leftrightarrow\left(x^2-4x+4\right)\left(x-1\right)=0\Leftrightarrow\left(x-2\right)^2\left(x-1\right)=0\Leftrightarrow\left[{}\begin{matrix}\left(x-2\right)^2=0\\\left(x-1\right)=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x-2=0\\x=1\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=2\left(tm\right)\\x=1\left(tm\right)\end{matrix}\right..Vậy:x\in\left\{1;2\right\}\)
\(x^2\left(x^2+5\right)-4x^2-20=0\)
⇔ \(x^4+5x^2-4x^2-20=0\)
⇔\(x^4+x^2-20=0\)
thay x\(^2\) bằng t ( t ≥ 0 ) ta có:
pt⇔ \(t^2+t-20=0\)
⇔ \(t^2+5t-4t-20=0\)
⇔ \(\left(t-4\right)\left(t+5\right)\)
⇔\(\left[{}\begin{matrix}t-4=0\\t+5=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}t=4\left(tm\right)\\t=-5\left(ktm\right)\end{matrix}\right.\)
* \(t=4\) ⇔ \(x^2=4\) ⇔ x = \(\pm2\)
\( {x^2}\left( {{x^2} + 5} \right) - 4{x^2} - 20 = 0\\ \Leftrightarrow {x^4} + 5{x^2} - 4{x^2} - 20 = 0\\ \Leftrightarrow {x^4} + {x^2} - 20 = 0 \)
Đặt \(x^2=t(t\ge0)\)
PT trở thành: \(t^2+t-20=0\)
\(\Leftrightarrow t=4\)(thỏa điều kiện); \(t=-5\)(không thỏa điều kiện)
Với \(t=4 \Rightarrow x^2=4 \Rightarrow x = \pm2\)
Vậy \(S=\left\{2;-2\right\}\)
\(x^2-25-\left(x-5\right)=0\)
\(\Leftrightarrow\left(x^2-25\right)-\left(x-5\right)=0\)
\(\Leftrightarrow\left(x-5\right)\left(x+5\right)-\left(x-5\right)=0\)
\(\Leftrightarrow\left(x-5\right)\left(x+5-1\right)=0\)
\(\Leftrightarrow\left(x-5\right)\left(x+4\right)=0\)
+)TH1: \(x-5=0\Leftrightarrow x=5\)
+)TH2: \(x+4=0\Leftrightarrow x=-4\)
Vậy x-5 hoặc x=-4
\(x^2-25-\left(x-5\right)=0\)
⇔ \(x^2\) -25 -x + 5 = 0
⇔ x\(^2\) -x - 20 = 0
⇔ \(x^2+4x-5x-20=0\)
⇔ \(\left(x^2-5x\right)+\left(4x-20\right)=0\)
⇔ x( x - 5 ) + 4( x - 5 ) = 0
⇔ ( x - 5 ) ( x+ 4 ) = 0
\(\Leftrightarrow\left[{}\begin{matrix}x-5=0\\x+4=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=5\\x=-4\end{matrix}\right.\)
\(\frac{x}{3}+\frac{x^2}{2}=0\)
\(\Leftrightarrow\frac{2x+3x^2}{6}=0\Leftrightarrow3x^2+2x=0\)
\(\Leftrightarrow x\left(3x+2\right)=0\Leftrightarrow\orbr{\begin{cases}x=0\\3x+2=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=0\\x=-\frac{2}{3}\end{cases}}\)
\(\left(x^2+3\right)\left(x+1\right)+x=-1\)
\(\Leftrightarrow\left(x^2+3\right)\left(x+1\right)+\left(x+1\right)=0\)
\(\Leftrightarrow\left(x^2+4\right)\left(x+1\right)=0\)
Mà \(x^2+4>0\)nên \(x+1=0\Leftrightarrow x=-1\)
Bài 1:
a) \(x^2-x+1\)
\(=x^2-x+\dfrac{1}{4}+\dfrac{3}{4}\)
\(=\left(x-\dfrac{1}{2}\right)^2+\dfrac{3}{4}\ge\dfrac{3}{4}>0;\forall x\)
b) \(25x^2+10x+2\)
\(=25x^2+10x+1+1\)
\(=\left(5x+1\right)^2+1\ge1>0;\forall x\)
c) \(3x^2+2x+14\)
\(=3x^2+2x+\dfrac{1}{3}+\dfrac{41}{3}\)
\(=\left(\sqrt{3}x+\dfrac{\sqrt{3}}{3}\right)^2+\dfrac{41}{3}\ge\dfrac{41}{3}>0;\forall x\)
d) \(2x^2+y^2-2xy-2x+2\)
\(=x^2+y^2-2xy-2x+x^2+1+1\)
\(=\left(x-y\right)^2+\left(x-1\right)^2+1\ge1>0;\forall x\)
Vậy ...