Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Từ \(x^2+2xy+7\left(x+y\right)+7y^2+10=0\Rightarrow\left(x+y\right)^2+7.\left(x+y\right)+6y^2+10=0\) ( * )
\(S=x+y+1\Rightarrow x+y=S-1\)
( * ) \(\left(S-1\right)^2+7.\left(S-1\right)+6y^2+10=0\)
\(\Rightarrow S^2+5S+4=-6y^2\le0\) với mọi y \(\Rightarrow S^2+5S+4\le0\)
=> (S + 4)(S + 1) ≤ 0 => S + 4 và S + 1 trái dấu
Giải 2 trường hợp => -4 ≤ S ≤ -1
=> GTNN của S bằng -4 khi y = 0 và x = -5
GTLN của S bằng -1 khi y = 0 và x = -2
Bài 1:
a, \(9^{x-1}=\dfrac{1}{9}\)
\(\Rightarrow9^{x-1}=9^{-1}\)
Vì \(9\ne-1;9\ne0;9\ne1\) nên
\(x-1=-1\Rightarrow x=0\)
Vậy \(x=0\)
b, \(\dfrac{1}{3}:\sqrt{7-3x^2}=\dfrac{2}{15}\)
\(\Rightarrow\sqrt{7-3x^2}=\dfrac{1}{3}:\dfrac{2}{15}\)
\(\Rightarrow\sqrt{7-3x^2}=\dfrac{5}{2}\)
\(\Rightarrow\left(\sqrt{7-3x^2}\right)^2=\left(\dfrac{5}{2}\right)^2\)
\(\Rightarrow7-3x^2=\dfrac{25}{4}\)
\(\Rightarrow3x^2=\dfrac{3}{4}\Rightarrow x^2=\dfrac{1}{4}\)
\(\Rightarrow x=\pm\dfrac{1}{2}\)
Vậy \(x=\pm\dfrac{1}{2}\)
Chúc bạn học tốt!!!
Bài 2:
Với mọi giá trị của \(x;y;z\in R\) ta có:
\(\sqrt{\left(x-\sqrt{2}\right)^2}\ge0;\sqrt{\left(y+\sqrt{2}\right)^2\ge}0;\left|x+y+z\right|\ge0\)
\(\Rightarrow\sqrt{\left(x-\sqrt{2}\right)^2}+\sqrt{\left(y+\sqrt{2}\right)^2}+\left|x+y+z\right|\ge0\) với mọi giá trị của \(x;y;z\in R\).
Để \(\sqrt{\left(x-\sqrt{2}\right)^2}+\sqrt{\left(y+\sqrt{2}\right)^2}+\left|x+y+z\right|=0\) thì
\(\left\{{}\begin{matrix}\sqrt{\left(x-\sqrt{2}\right)^2}=0\\\sqrt{\left(y+\sqrt{2}\right)^2}=0\\\left|x+y+z\right|=0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x-\sqrt{2}=0\\y+\sqrt{2}=0\\x+y+z=0\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}x=\sqrt{2}\\y=-\sqrt{2}\\\sqrt{2}-\sqrt{2}+z=0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=\sqrt{2}\\y=-\sqrt{2}\\z=0\end{matrix}\right.\)
Vậy \(x=\sqrt{2};y=-\sqrt{2};z=0\)
Chúc bạn học tốt!!!
a) Áp dụng t/c dãy tỉ số bằng nhau, ta có:
\(\frac{x}{2}=\frac{y}{3}=\frac{y-x}{3-2}=\frac{14}{1}=14\)
=> \(\begin{cases}x=28\\y=42\end{cases}\)
b) Từ 2x = 7y => \(\frac{2x}{14}=\frac{7y}{14}\Rightarrow\frac{x}{7}=\frac{y}{2}\)
Áp dụng t/c dãy tỉ số bằng nhau, ta có:
\(\frac{x}{7}=\frac{y}{2}=\frac{x+y}{7+2}=\frac{36}{9}=4\)
=> \(\begin{cases}x=28\\y=8\end{cases}\)
c) Từ \(\frac{x}{y}=\frac{3}{7}\Rightarrow\frac{x}{7}=\frac{y}{3}\)
Áp dụng t/c dãy tỉ số bằng nhau, ta có:
\(\frac{x}{7}=\frac{y}{3}=\frac{y-x}{3-7}=\frac{20}{-4}=-5\)
=> \(\begin{cases}x=-35\\y=-15\end{cases}\)
d) Đặt \(\frac{x}{2}=\frac{y}{3}=k\Rightarrow\begin{cases}x=2k\\y=3k\end{cases}\)
Vì xy = 24 => 2k.3k = 24 => 6k2 = 24 => k2 = 4 => k = \(\pm\) 2
Với k = 2 => \(\begin{cases}x=4\\y=6\end{cases}\)
Với k = -2 => \(\begin{cases}x=-4\\y=-6\end{cases}\)
\(\frac{x+11}{12}+\frac{x+11}{13}+\frac{x+11}{14}=\frac{x+11}{15}+\frac{x+11}{16}\)
\(\Rightarrow\frac{x+11}{12}+\frac{x+11}{13}+\frac{x+11}{14}-\frac{x+11}{15}-\frac{x+11}{16}=0\)
\(\Rightarrow\left(x+11\right)\left(\frac{1}{12}+\frac{1}{13}+\frac{1}{14}-\frac{1}{15}-\frac{1}{16}\right)=0\)
Mà \(\left(\frac{1}{12}+\frac{1}{13}+\frac{1}{14}-\frac{1}{15}-\frac{1}{16}\right)\ne0\)
\(\Rightarrow x+11=0\Rightarrow x=-11\)
\(x^2\ge0\)
\(\Rightarrow2015x\ge0\)
\(\Rightarrow1-x^2\ge1\)
\(\Rightarrow\sqrt{1-x^2}\ge1\)
\(\Rightarrow\dfrac{2017-2015x}{\sqrt{1-x^2}}\ge\dfrac{2017}{1}=2017\)
Dấu "=" xảy ra khi \(x^2=0\)
\(\Leftrightarrow x=0\)
Vậy \(P\min\limits=2017\Leftrightarrow x=0\)
\(7-\sqrt{x}=0\)
\(\sqrt{x}=7\)
\(x=49\)
\(7-\sqrt{x}=0\)
\(\Rightarrow\sqrt{x}=7-0=7\)
\(\Rightarrow\sqrt{x}=7\Rightarrow x=49\)