Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(x.\left(x-\frac{1}{7}\right)\left(\frac{1}{9}+x\right)< 0\)
có 4 TH ( Trường hợp)
TH1: \(\hept{\begin{cases}x>0\\x-\frac{1}{7}>0\\\frac{1}{9}+x< 0\end{cases}\Leftrightarrow\hept{\begin{cases}x>0\\x>\frac{1}{7}\\x< -\frac{1}{9}\end{cases}}}\)( vô lí)
TH2:\(\hept{\begin{cases}x>0\\x-\frac{1}{7}< 0\\\frac{1}{9}+x>0\end{cases}\Leftrightarrow\hept{\begin{cases}x>0\\x< \frac{1}{7}\\x>-\frac{1}{9}\end{cases}\Leftrightarrow}0< x< \frac{1}{7}}\)
TH3:\(\hept{\begin{cases}x< 0\\x-\frac{1}{7}>0\\\frac{1}{9}+x>0\end{cases}\Leftrightarrow\hept{\begin{cases}x< 0\\x>\frac{1}{7}\\x>-\frac{1}{9}\end{cases}}}\)(vô lí )
TH4:\(\hept{\begin{cases}x< 0\\x+\frac{1}{7}< 0\\\frac{1}{9}-x< 0\end{cases}\Leftrightarrow\hept{\begin{cases}x< 0\\x< -\frac{1}{7}\\x>\frac{1}{9}\end{cases}}}\)(vô lí)
KL: 0<x<1/7
b) \(\frac{\left(4-x\right)}{2x}-\frac{1}{5}>0\)đk: \(x\ne0\)
<=> \(\left(4-x\right).5-2x.1>0\)
<=> \(20-5x-2x>0\)
<=> \(20-7x>0\)
<=> \(20>7x\Leftrightarrow x< \frac{20}{7}\)
a, \(\left(2-x\right)\left(x+3\right)>0\Leftrightarrow\left(x-2\right)\left(x+3\right)< 0\)
Vì \(x+3>x-2\)
nên \(\hept{\begin{cases}x+3>0\\x-2< 0\end{cases}}\Leftrightarrow\hept{\begin{cases}x>-3\\x< 2\end{cases}\Leftrightarrow-3< x< 2}\)
c, \(\left(5-2x\right)\left(x+4\right)>0\)
TH1 : \(\hept{\begin{cases}5-2x>0\\x+4>0\end{cases}}\Leftrightarrow\hept{\begin{cases}x< \frac{5}{2}\\x>-4\end{cases}}\Leftrightarrow-4< x< \frac{5}{2}\)
TH2 : \(\hept{\begin{cases}5-2x< 0\\x+4< 0\end{cases}}\Leftrightarrow\hept{\begin{cases}x>\frac{5}{2}\\x< -4\end{cases}}\)( vô lí )
bạn làm tương tự nhé
a) th1: 2x-4>0 và 9-3x>0 <=> x>2 và x<3 => 2<x<3
th2: 2x-4<0 và 9-3x<0 <=> x<2 và x>3 => loại
=> tập các giá trị: 2<x<3
b) \(\left(\frac{3}{2}x-4\right).\frac{5}{3}>\frac{15}{6}\Leftrightarrow\frac{3}{2}x-4>\frac{3}{2}\Leftrightarrow\frac{3}{2}x>\frac{11}{2}\Leftrightarrow x>\frac{11}{3}\).
nhớ L I K E
Tìm x biết :a) ( 2x - 3 ).( x +1 ) > 0b) ( x + 5 ).(x-7) < 0c) | 2x - 3 | + 8 = 10d) ( 2x + 5 ) . | x -8 | . ( x2 + 1 ) = 0
Ta có: \(\left|7-2x\right|-4>2x\)
\(\Leftrightarrow\left|7-2x\right|>2x+4\)
\(\Leftrightarrow\left[{}\begin{matrix}7-2x>2x+4\\7-2x< -2x-4\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}7-2x-2x-4>0\\7-2x+2x+4< 0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}-4x+3>0\\11< 0\left(loại\right)\end{matrix}\right.\Leftrightarrow-4x>-3\)
hay \(x< \frac{3}{4}\)
Vậy: S={x|\(x< \frac{3}{4}\)}