K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
7 tháng 10 2019

a/ \(x\left(x^2-2x-2\right)=0\)

\(\Rightarrow\left[{}\begin{matrix}x=0\\x=1\pm\sqrt{3}\\\end{matrix}\right.\)

b/ \(\Leftrightarrow2x^3-4x^2+6x-x^2+2x-3=0\)

\(\Leftrightarrow2x\left(x^2-2x+3\right)-\left(x^2-2x+3\right)=0\)

\(\Leftrightarrow\left(2x-1\right)\left(x^2-2x+3\right)=0\)

c/ \(\Leftrightarrow3x^3-15x^2+9x+x^2-5x+3=0\)

\(\Leftrightarrow3x\left(x^2-5x+3\right)+\left(x^2-5x+3\right)=0\)

\(\Leftrightarrow\left(3x+1\right)\left(x^2-5x+3\right)=0\Rightarrow\left[{}\begin{matrix}x=-\frac{1}{3}\\x=\frac{5\pm\sqrt{13}}{2}\end{matrix}\right.\)

d/ \(x\left(x^2+6x-5\right)=0\Rightarrow\left[{}\begin{matrix}x=0\\x=-3\pm\sqrt{14}\end{matrix}\right.\)

2 tháng 6 2017

Tìm x

x3-x2-14x+24=0

<=> x3-3x2+2x2-6x-8x+24=0

<=> x2(x-3)+2x(x-3)-8(x-3)=0

<=> (x-3)(x2+2x-8)=0

<=> (x-3)(x2-2x+4x-8)=0

<=>(x-3)(x-2)(x+4)=0

<=> x-3=0 hay x-2=0 hay x+4=0

<=> x=3 hay x=2 hay x=-4

S={3;2;-4}

9 tháng 8 2017

a) (x-5)(x^2+2x+9)

b) (x-1)(2x-3)(3x-1)

21 tháng 4 2020

Sorry Ngân Chu, đoạn chia hết cho 120 thì thêm cả chia hết cho 2 nữa, nên nhân vào mới ra 120 nhé!!

21 tháng 4 2020

Bài 1:

a, (n + 3)2 - (n - 1)2

= (n + 3 - n + 1)(n + 3 + n - 1)

= 4(2n - 2)

= 8(n - 1)

Vì 8 \(⋮\) 8 nên 8(n - 1) \(⋮\) 8 với n \(\in\) Z

b, n5 - 5n3 + 4n

= n(n4 - 5n2 + 4)

= n(n4 - n2 - 4n2 + 4)

= n[n2(n2 - 1) - 4(n2 - 1)]

= n(n2 - 1)(n2 - 4)

= n(n - 1)(n + 1)(n - 2)(n + 2)

= (n - 2)(n - 1)n(n + 1)(n + 2)

Vì (n - 2)(n - 1)n(n + 1)(n + 2) là tích của 5 số nguyên liên tiếp nên chia hết cho 3, 5, 8

Mà 3 x 5 x 8 = 120

\(\Rightarrow\) (n - 2)(n - 1)n(n + 1)(n + 2) \(⋮\) 120 hay n5 - 5n3 + 4n \(⋮\) 120 với n \(\in\) Z

Bài 2:

a, 4x(x + 1) = 8(x + 1)

\(\Leftrightarrow\) 4x(x + 1) - 8(x + 1) = 0

\(\Leftrightarrow\) (x + 1)(4x - 8) = 0

\(\Leftrightarrow\) 4(x + 1)(x - 2) = 0

\(\Leftrightarrow\) (x + 1)(x - 2) = 0

\(\Leftrightarrow\left[{}\begin{matrix}x+1=0\\x-2=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-1\\x=2\end{matrix}\right.\)

Vậy S = {-1; 2}

b, x2 - 6x + 8 = 0

\(\Leftrightarrow\) x2 - 6x + 9 - 1 = 0

\(\Leftrightarrow\) (x - 3)2 - 1 = 0

\(\Leftrightarrow\) (x - 3 - 1)(x - 3 + 1) = 0

\(\Leftrightarrow\) (x - 4)(x - 2) = 0

\(\Leftrightarrow\left[{}\begin{matrix}x-4=0\\x-2=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=4\\x=2\end{matrix}\right.\)

Vậy S = {4; 2}

c, x3 + x2 + x + 1 = 0

\(\Leftrightarrow\) x2(x + 1) + (x + 1) = 0

\(\Leftrightarrow\) (x + 1)(x2 + 1) = 0

Vì x2 + 1 > 0 với mọi x

\(\Rightarrow\) x + 1 = 0

\(\Leftrightarrow\) x = -1

Vậy S = {-1}

d, x3 - 7x - 6 = 0

\(\Leftrightarrow\) x3 - x - 6x - 6 = 0

\(\Leftrightarrow\) (x3 - x) - (6x + 6) = 0

\(\Leftrightarrow\) x(x2 - 1) - 6(x + 1) = 0

\(\Leftrightarrow\) x(x - 1)(x + 1) - 6(x + 1) = 0

\(\Leftrightarrow\) (x + 1)[x(x - 1) - 6] = 0

\(\Leftrightarrow\) (x + 1)(x2 - x - 6) = 0

\(\Leftrightarrow\) (x + 1)(x2 - 3x + 2x - 6) = 0

\(\Leftrightarrow\) (x + 1)[x(x - 3) + 2(x - 3)] = 0

\(\Leftrightarrow\) (x + 1)(x - 3)(x + 2) = 0

\(\Leftrightarrow\left[{}\begin{matrix}x+1=0\\x-3=0\\x+2=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-1\\x=3\\x=-2\end{matrix}\right.\)

Vậy S = {-1; 3; -2}

Câu e hình như bạn viết nhầm 2 lần số 17x thì phải, mình sửa lại rồi!!

e, 3x3 - 7x2 + 17x - 5 = 0

\(\Leftrightarrow\) 3x3 - x2 - 6x2 + 2x + 15x - 5 = 0

\(\Leftrightarrow\) (3x3 - x2) + (-6x2 + 2x) + (15x - 5) = 0

\(\Leftrightarrow\) x2(3x - 1) - 2x(3x - 1) + 5(3x - 1) = 0

\(\Leftrightarrow\) (3x - 1)(x2 - 2x + 5) = 0

\(\Leftrightarrow\) (3x - 1)(x2 - 2x + \(\frac{1}{4}\) + \(\frac{19}{4}\)) = 0

\(\Leftrightarrow\) (3x - 1)[(x - \(\frac{1}{2}\))2 + \(\frac{19}{4}\)] = 0

Vì (x - \(\frac{1}{2}\))2 + \(\frac{19}{4}\) > 0 với mọi x nên

\(\Rightarrow\) 3x - 1 = 0

\(\Leftrightarrow\) x = \(\frac{1}{3}\)

Vậy S = {\(\frac{1}{3}\)}

Bài 3:

Hình như phần a thì 16(1 - x) mới đúng chứ!!

a, x2(x - 1) + 16(1 - x)

= x2(x - 1) - 16(x - 1)

= (x - 1)(x2 - 16)

= (x - 1)(x - 4)(x + 4)

Câu b, d, g mình chịu, hình như đề sai thì phải, mình ko nghĩ ra được!!

c, x3 - 3x2 - 3x + 1

= (x3 + 1) - (3x2 + 3x)

= (x + 1)(x2 + x + 1) - 3x(x + 1)

= (x + 1)(x2 + x + 1 - 3x)

= (x + 1)(x2 - 2x + 1)

= (x + 1)(x - 1)(x - 1)

e, x4 - 13x2 + 36

= x4 - 4x2 - 9x2 + 36

= x2(x2 - 4) - 9(x2 - 4)

= (x2 - 4)(x2 - 9)

= (x - 2)(x + 2)(x - 3)(x + 3)

f, (x2 + x)2 + 4x2 + 4x - 12

= (x2 + x)2 + 4x2 + 4x + 4 - 16

= (x2 + x)2 + 4(x2 + x) + 4 - 16

= (x2 + x + 2)2 - 16

= (x2 + x + 2 - 4)(x2 + x + 2 + 4)

= (x2 + x - 2)(x2 + x + 6)

18 tháng 3 2020

rrrrrrrr\(x = {-b \pm \sqrt{b^2-4ac} \over 2a}\)

4 tháng 12 2017

đi qua đường vào giúp cho một câu:

\(a^3+b^3+c^3-3abc\)

\(=a^3+3ab\left(a+b\right)+b^3+c^3-3abc-3ab\left(a+b\right)\)

\(=\left(a+b\right)^3+c^3-3ab\left(a+b+c\right)\)

\(=\left(a+b+c\right)\left(\left(a+b\right)^2+c\left(a+b\right)+c^2\right)-3ab\left(a+b+c\right)\)

\(\left(a+b+c\right)\left(a^2+b^2+c^2-ab-bc-ac\right)\)

4 tháng 12 2017

==" thui thêm câu nữa mai kiểm tra 1 tiết ùi :D
\(x^2-2xy+y^2+3x-3y-10\)

\(=\left(x-y\right)^2+3\left(x-y\right)-10\)

\(=\left(x-y\right)\left(x-y+3\right)-10\)

Đặt x-y = a, có:

\(a\left(a+3\right)-10\)

\(=a^2+3a-10\)

\(=\left(a+5\right)\left(a-2\right)\)

\(=\left(x-y+5\right)\left(x-y-2\right)\)

11 tháng 11 2017

a) \(5x^3-125=0\)

\(\Leftrightarrow5x^3=125\)

\(\Leftrightarrow x^3=25\)

\(\Leftrightarrow x^3=25\)

\(\Leftrightarrow x=\sqrt[3]{25}\)

c) \(6x+13x+5=0\)

\(\Leftrightarrow19x+5=0\)

\(\Leftrightarrow19x=-5\)

\(\Leftrightarrow x=\dfrac{-5}{19}\)

11 tháng 11 2017

Hỏi đáp Toán