Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1. \(A=x^{15}+3x^{14}+5=x^{14}\left(x+3\right)+5\)
Thay \(x+3=0\)vào đa thức ta được:\(A=x^{14}.0+5=5\)
2. \(B=\left(x^{2007}+3x^{2006}+1\right)^{2007}=\left[x^{2006}\left(x+3\right)+1\right]^{2007}\)
Thay \(x=-3\)vào đa thức ta được: \(B=\left[x^{2006}\left(-3+3\right)+1\right]^{2017}=\left(x^{2006}.0+1\right)^{2017}=1^{2017}=1\)
3. \(C=21x^4+12x^3-3x^2+24x+15=3x\left(7x^3+4x^2-x+8\right)+15\)
Thay \(7x^3+4x^2-x+8=0\)vào đa thức ta được: \(C=3x.0+15=15\)
4. \(D=-16x^5-28x^4+16x^3-20x^2+32x+2007\)
\(=4x\left(-4x^4-7x^3+4x^2-5x+8\right)+2007\)
Thay \(-4x^4-7x^3+4x^2-5x+8=0\)vào đa thức ta được: \(D=4x.0+2007=2007\)
1. \(A=x^{15}+3x^{14}+5\)
\(A=x^{14}\left(x+3\right)+5\)
\(A=x^{14}+5\)
2. \(B=\left(x^{2007}+3x^{2006}+1\right)^{2007}\)
\(B=\left[x^{2006}\left(x+3\right)+1\right]^{2007}\)
\(B=\left[x^{2006}.\left(-3+3\right)+1\right]^{2007}\)
\(B=1^{2007}=1\)
3. \(C=21x^4+12x^3-3x^2+24x+15\)
\(C=3x\left(7x^2+4x^2-x+8+5\right)\)
\(C=3x\left(0+5\right)\)
\(C=15x\)
4. \(D=-16x^5-28x^4+16x^3-20x^2+32+2007\)
\(D=4x\left(-4x^4-7x^3+4x^2-5x+8\right)+2007\)
\(D=4x.0+2007\)
\(D=2007\)
1, \(x^2-4x-4x+16=0\)
\(\Leftrightarrow x^2-8x+16=0\)
\(\Leftrightarrow\left(x-4\right)^2=0\)
\(\Leftrightarrow x-4=0\Leftrightarrow x=4\)
Vậy.............
2, \(x^2+3x-5x-15=0\)
\(\Leftrightarrow x^2-2x+1-16=0\)
\(\Leftrightarrow\left(x-1\right)^2=16\)
\(\Leftrightarrow\left[{}\begin{matrix}x-1=4\\x-1=-4\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=5\\x=-3\end{matrix}\right.\)
Vậy...............
3, \(x^2-6x+8=0\)
\(\Leftrightarrow x^2-6x+9-1=0\)
\(\Leftrightarrow\left(x-3\right)^2-1=0\)
\(\Leftrightarrow\left(x-3\right)^3=1\)
\(\Leftrightarrow\left[{}\begin{matrix}x-3=1\\x-3=-1\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=4\\x=2\end{matrix}\right.\)
Vậy......................
4, \(x^2+8x+12=0\)
\(\Leftrightarrow x^2+8x+16-4=0\)
\(\Leftrightarrow\left(x+4\right)^2-4=0\)
\(\Leftrightarrow\left(x+4\right)^2=4\)
\(\Leftrightarrow\left[{}\begin{matrix}x+4=2\\x+4=-2\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-2\\x=-6\end{matrix}\right.\)
Vậy............
a: \(\Leftrightarrow\left\{{}\begin{matrix}x>=1\\\left(2x-2\right)^2-\left(x-4\right)^2=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x>=1\\\left(2x-2-x+4\right)\left(2x-2+x-4\right)=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x>=1\\\left(x+2\right)\left(3x-6\right)=0\end{matrix}\right.\Leftrightarrow x=2\)
b: \(\Leftrightarrow\left|4x-\dfrac{1}{5}\right|\cdot\dfrac{7}{3}=\dfrac{9}{2}+\dfrac{1}{6}=\dfrac{14}{3}\)
\(\Leftrightarrow\left|4x-\dfrac{1}{5}\right|=2\)
\(\Leftrightarrow\left[{}\begin{matrix}4x-\dfrac{1}{5}=2\\4x-\dfrac{1}{5}=-2\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}4x=\dfrac{11}{5}\\4x=-\dfrac{9}{5}\end{matrix}\right.\Leftrightarrow x\in\left\{\dfrac{11}{20};-\dfrac{9}{20}\right\}\)
\(E=5x^7+10x^6-20x^5-35x^4+20x^3-5x^2+40x+105\)
\(=\left(5x^7+10x^6-20x^5-35x^4+20x^3-5x^2+40x\right)+105\)
\(=5x\left(x^6+2x^5-4x^4-7x^3+4x^2-x+8\right)+105\)
Thay \(x^6+2x^5-4x^4-7x^3+4x^2-x+8=0\)vào đa thức ta được:
\(E=5x.0+105=105\)
\(|x^2+4|=4x\Rightarrow\orbr{\begin{cases}x^2+4=4x\Rightarrow x^2-4x+4=0\Rightarrow\left(x-2\right)^2=0\Rightarrow x-2=0\Rightarrow x=2\\x^2+4=-4x\Rightarrow x^2+4x+4=0\Rightarrow\left(x+2\right)^2=0\Rightarrow x+2=0\Rightarrow x=-2\end{cases}}\)
\(|2-4x|=2x-1\Rightarrow\orbr{\begin{cases}2-4x=2x-1\Rightarrow-4x-2x=-1-2\Rightarrow-6x=-3\Rightarrow x=\frac{1}{2}\\2-4x=-2x+1\Rightarrow-4x+2x=1-2\Rightarrow-2x=-1\Rightarrow x=\frac{1}{2}\end{cases}}\)
| x2 + 4 | = 4x
\(\Rightarrow\) x2 + 4 = \(\pm\)4x
TH1: x2 + 4 = 4x
\(\Rightarrow\)x2 +4 - 4x = 0
\(\Rightarrow\)( x -2 )2 = 0
\(\Rightarrow\)x - 2 = 0
\(\Rightarrow\) x= 2
| 2 - 4x | = 2x + 1
\(\Rightarrow\)2 - 4x = \(\pm\) 2x + 1
TH1 : Tự làm tiếp nha :))
\(3x^2-2x-8=0\\ \Leftrightarrow3x^2-2x=8\\ E=6x^2-4x+9\\ =3x^2+3x^2-2x-2x-8+17\\ =\left(3x^2-2x-8\right)+\left(3x^2-2x+17\right)\\ =3x^2-2x+17\\ =\left(3x^2-2x\right)+17=8+17=25\)
\(x+y=0\\ \Leftrightarrow y=-x\\ D=x^4-y^4+x^3y-xy^3\\ =\left(x^2+y^2\right)\left(x^2-y^2\right)+xy\left(x^2-y^2\right)\\ =\left(x^2+y^2+xy\right)\left(x^2-y^2\right)\\ =\left(x^2+\left(-x\right)^2+x.\left(-x\right)\right)\left(x^2-\left(-x\right)^2\right)\\ =\left(x^2+x^2-x^2\right)\left(x^2-x^2\right)\\ =x^2.0=0\)