Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) <=> \(3x^4-9x^3+9x^2-27x=0\)
<=>\(3x\left(x^3-3x^2+3x-9\right)=0\)
<=>\(3x\left(x-3\right)\left(x^2+3\right)\)=0
<=>x=0 hoặc x=3
b) \(\left(x+3\right)\left(x^2-3x+5\right)-x\left(x+3\right)=0\)
<=>\(\left(x+3\right)\left(x^2-4x+5\right)=0\)
<=>\(\left(x+3\right)\left(\left(x-2\right)^2+1\right)=0\)
=> x=-3
a) 3x4 - 9x3 = -9x2 + 27x
3x4 - 9x3 + 9x2 - 27x = 0
3x(x3 - 3x2 + 3x - 9) = 0
3x[x2(x - 3) + 3(x - 3)] = 0
3x(x - 3)(x2 + 3) = 0
vì x2 + 3 > 0 nên:
3x = 0 hoặc x - 3 = 0
x = 0 : 3 x = 0 + 3
x = 0 x = 3
=> x = 0 hoặc x = 3
b) (x + 3)(x2 - 3x + 5) = x2 + 3x
x3 - 3x2 + 5x + 3x2 - 9x = x2 + 3x
x3 - 4x + 15 = x2 + 3x
x3 - 4x + 15 - x2 - 3x = 0
x3 - 7x + 15 - x2 = 0
(x2 - 4x + 5)(x + 3) = 0
vì x2 - 4x + 5 > 0 nên
x + 3 = 0
=> x = -3
9x2-6x-3=0
=>9x2-9x+3x-3=0
=>(x-1)(9x-3)=0
=>x-1=0 hoặc 9x+3 = 0
=> x=1 hoặc x=-1/3
b. x3+9x2+27x+19=0
x3+x2+8x2+8x+19x+19=0
(x+1)(x2+8x+19)=0
x+1=0 => x=-1
x2+8x+19= x2+8x+16+3=(x+4)2+3 lớn hơn hoặc bằng 3., lớn hơn 0 với moị x
a, \(\Rightarrow3\left(3x^2-2x-1\right)=0\)
\(\Rightarrow3x^2-2x-1=0\)
\(\Rightarrow x\left(3x-2\right)=1\)
\(\Rightarrow\orbr{\begin{cases}x=1\\3x-2=1\end{cases}\Rightarrow\orbr{\begin{cases}x=1\\x=1\end{cases}}}\)
\(\Rightarrow\orbr{\begin{cases}x=-1\\3x-2=-1\end{cases}\Rightarrow}\orbr{\begin{cases}x=-1\\x=\frac{1}{3}\end{cases}}\)
b,\(\Rightarrow x^3+3x^2+6x^2+9x+18x+19=0\)
\(\Rightarrow x^2\left(x+3\right)+3x\left(x+3\right)+18\left(x+3\right)-2=0\)
\(\Rightarrow\left(x+3\right)\left(x^2+3x+18\right)=2\)
Mk k co thoi gian. buoc tiep theo tu lam not nhe
\(\left(27x^3+1\right):\left(9x^2-3x+1\right)=\left(3x+1\right)\left(9x^2-3x+1\right):\left(9x^2-3x+1\right)=3x+1\)
\(\left(x^3+3x^2+3x+1\right):\left(x+1\right)=\left(x+1\right)^3:\left(x+1\right)=\left(x+1\right)^2\)
a) 9x2 - 1 = (3x + 1)(2x - 3)
=> 9x2 - 1 = 6x2 - 9x + 2x - 3
=> 9x2 - 6x2 + 7x - 1 + 3 = 0
=> 3x2 + 7x + 2 = 0
=> 3x2 + 6x + x + 2 = 0
=> 3x(x + 2) + (x + 2) = 0
=> (3x + 1)(x + 2) = 0
=>\(\orbr{\begin{cases}3x+1=0\\x+2=0\end{cases}}\)
=> \(\orbr{\begin{cases}x=-\frac{1}{3}\\x=-2\end{cases}}\)
b) 2(9x2 + 6x + 1) = (3x + 1)(x - 2)
=> 2(3x + 1)2 - (3x + 1)(x - 2) = 0
=> (3x + 1)(6x + 2 - x + 2) = 0
=> (3x + 1)(5x +4 ) = 0
=> \(\orbr{\begin{cases}3x+1=0\\5x+4=0\end{cases}}\)
=> \(\orbr{\begin{cases}x=-\frac{1}{3}\\x=-\frac{4}{5}\end{cases}}\)
c) 27x2(x + 3) - 12(x2 + 3x) = 0
=> 27x2(x + 3) - 12x(x + 3) = 0
=> 3x(9x - 4)(x + 3) = 0
=> 3x = 0
9x - 4 = 0
x + 3 = 0
=> x = 0
x = 4/9
x = -3
d) 16x2 - 8x + 1 = 4(x + 3)(4x - 1)
=> (4x - 1)2 - 4(x + 3)(4x - 1) = 0
=> (4x - 1)(4x - 1 - 4x - 12) = 0
=> 4x - 1 = 0
=> x = 1/4
a, \(x^3-3x^2+3x-1=\left(x-1\right)^3\)
b, \(1-9x+27x^2-27x^3=-\left(3x-1\right)^3\)
Mình có làm ở câu dưới rồi . Bạn tham khảo link :
https://olm.vn/hoi-dap/detail/231817932107.html
1, -x3 + 9x2 - 27x + 27 = - ( x3 - 9x2 + 27x - 27 )
= - ( x - 3 )3
2, x2 - 3x + 2 = x2 - x - 2x + 2
= ( x2 - x ) - ( 2x - 2 )
= x ( x - 1 ) - 2 ( x -1 )
= ( x - 1 ) ( x - 2 )
Hk tốt
a) x3-9x2+27x-27=0
<=>(x-3)3=0
<=>x-3=0
<=>x=3
b) x3-25x=0
<=>x.(x2-25)=0
<=>x.(x-5)(x+5)=0
<=>x=0 hoặc x-5=0 hoặc x+5=0
<=>x=0 hoặc x=5 hoặc x=-5
c)9x2-1=0
<=>(3x-1)(3x+1)=0
<=>3x-1=0 hoặc 3x+1=0
<=>x=1/3 hoặc x=-1/3
a, x^3 - 9x^2 + 27x - 27 = 0
=> ( x - 3)^3 = 0
=> x - 3 = 0
=> x = 3
b, x^3 - 25x = 0
=> x(x^2 - 25) = 0
=> x(x-5)(x + 5) = 0
=> x =0 hoặc x - 5 = 0 hoặc x + 5 = 0
=> x= 0 hoặc x =5 hoặc x = -5
c, 9x^2 - 1 = 0
=> (3x)^2 - 1^2 = 0
=> ( 3x- 1)(3x+ 1) = 0
=> 3x - 1 = 0 hoặc 3x + 1 = 0
=> x = 1/3 hoặc x = -1/3
\(\Rightarrow3x^4-9x^3+9x^2-27x=0\)
\(\Rightarrow3x^2\left(x^2+3\right)-9x\left(x^2+3\right)=0\)
\(\Rightarrow3x\left(x-3\right)\left(x^2+3\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x=0\\x=3\end{matrix}\right.\)
\(3x^4-9x^3=-9x^2+27x\)
\(\Leftrightarrow3x^4-9x^3+9x^2-27x=0\)
\(\Leftrightarrow3x^3\left(x-3\right)+9x\left(x-3\right)=0\)
\(\Leftrightarrow\left(x-3\right)\left(3x^3+9x\right)=0\)
\(\Leftrightarrow3x\left(x^2+3\right)\left(x-3\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}3x=0\\x^2+3=0\\x-3=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x^2=-3\left(L\right)\\x=3\end{matrix}\right.\)
Vậy PT có nghiệm là \(\left[{}\begin{matrix}x=0\\x=3\end{matrix}\right.\)