Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
3x + 3x + 2 = 270
=> 3x . 1 + 3x . 32 = 270
=> 3x (1 + 32) = 270
=> 3x . 10 = 270
=> 3x = 270 : 10 = 27
=> x = 3
3x + 3x + 2 = 270
=> 3x + 3x.32 = 270
=> 3x(1 + 32) = 270
=> 3x = 27
=> 3x = 33
=> x = 3
Vậy x = 3
\(3^x+3^{x+2}=270\)
\(3^x+3^x\cdot3^2=270\)
\(3^x+3^x\cdot9=270\)
\(3^x\cdot\left(1+9\right)=270\)
\(3^x\cdot10=270\)
\(3^x=270:10=27\)
\(\Rightarrow3^x=3^3\) \(\Rightarrow x=3\)
Chỉ biết cách châu bò này :#
\(\frac{x}{2^2}+\frac{x}{2^3}+\frac{x}{2^4}=\frac{x}{3^2}+\frac{x}{3^3}+\frac{x}{3^4}\)
\(\Leftrightarrow\frac{x}{4}+\frac{x}{8}+\frac{x}{16}=\frac{x}{9}+\frac{x}{27}+\frac{x}{81}\)
\(\Leftrightarrow\frac{4x}{16}+\frac{2x}{16}+\frac{x}{16}=\frac{9x}{81}+\frac{3x}{81}+\frac{x}{81}\)
\(\Leftrightarrow\frac{7x}{16}=\frac{13x}{81}\Leftrightarrow567x=208x\Leftrightarrow x=\frac{1}{359}\)
4) \(2.3^x+3^{x-1}=7.\left(3^2+2.6^2\right)\)
\(\Rightarrow2.3^x+3^{x-1}=567\)
\(\Rightarrow7.3^{x-1}=567\)
\(\Rightarrow3^{x-1}=567\div7\)
\(\Rightarrow3^{x-1}=81\)
\(\Rightarrow3^{x-1}=3^4\)
\(\Rightarrow x-1=4\)
\(\Rightarrow x=4+1\)
\(\Rightarrow x=5\)
Vậy \(x=5\)
Hằng đẳng thức đó bn:
\(\left(a+b\right)\left(a^2-ab+b^2\right)\)
Thay vào thì: \(-\left(x-3\right)\left(x^2-3x+9\right)=-\left[\left(x-3\right)\left(x^2-3x+3^2\right)\right]\)
\(=-\left(x^3-27\right)=-x^3+27\)
Bài làm:
Ta có: \(\left(x-1\right)^3-\left(x+3\right)\left(x^2-3x+9\right)=\left(x-3\right)^3+3\left(2x+1\right)^2-\left(x^3-5x+1\right)\)
\(\Leftrightarrow x^3-3x^2+3x-1-x^3+27=x^3-9x^2+27x-27+12x^2+12x+3-x^3+5x-1\)
\(\Leftrightarrow6x^2+41x-51=0\)
\(\Leftrightarrow6\left(x^2+\frac{41}{6}x+\frac{1681}{144}\right)-\frac{2905}{24}=0\)
\(\Leftrightarrow\left(x+\frac{41}{12}\right)^2-\frac{\left(\sqrt{2905}\right)^2}{12^2}=0\)
\(\Leftrightarrow\left(x+\frac{41}{12}-\frac{\sqrt{2905}}{12}\right)\left(x+\frac{41}{12}+\frac{\sqrt{2905}}{12}\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x=\frac{\sqrt{2905}-41}{12}\\x=\frac{-\sqrt{2905}-41}{12}\end{cases}}\)
3x + 3x+2 = 270
=> 3x.(1 + 32) = 270
=> 3x.(1 + 9) = 270
=> 3x.10 = 270
=> 3x = 270 : 10
=> 3x = 27
=> 3x = 33
=> x = 3
\(3^x+3^{x+2}=270\)
\(=>3^x\left(1+3^2\right)=270\)
\(=>3^x.10=270\)
\(=>3^x=27\)
\(=>x=3\)