Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(3x-\frac{15}{5\cdot8}-\frac{15}{8\cdot11}-\frac{15}{11\cdot14}-...-\frac{15}{47\cdot50}=2\frac{1}{10}\)
<=> \(3x-5\left(\frac{3}{5\cdot8}+\frac{3}{8\cdot11}+\frac{3}{11\cdot14}+...+\frac{3}{47\cdot50}\right)=\frac{21}{10}\)
<=> \(3x-5\left(\frac{1}{5}-\frac{1}{8}+\frac{1}{8}-\frac{1}{11}+\frac{1}{11}-\frac{1}{14}+...+\frac{1}{47}-\frac{1}{50}\right)=\frac{21}{10}\)
<=> \(3x-5\left(\frac{1}{5}-\frac{1}{50}\right)=\frac{21}{10}\)
<=> \(3x-5\cdot\frac{9}{50}=\frac{21}{10}\)
<=> \(3x-\frac{9}{10}=\frac{21}{10}\)
<=> \(3x=3\)
<=> \(x=1\)
Ta có : \(\frac{15}{5.8}-\frac{15}{8.11}-\frac{15}{11.14}-......-\frac{15}{47.45}\)
\(=\frac{3}{8}-\left(\frac{15}{8.11}+\frac{15}{11.14}+\frac{15}{14.17}+......+\frac{15}{47.50}\right)\)
\(=\frac{3}{8}-\left(\frac{1}{8}-\frac{1}{11}+\frac{1}{11}-\frac{1}{14}+.....+\frac{11}{47}-\frac{1}{50}\right)\)
\(=\frac{3}{8}-\left(\frac{1}{8}-\frac{1}{50}\right)\)
\(=\frac{3}{8}-\frac{1}{8}+\frac{1}{50}\)
\(=\frac{1}{4}+\frac{1}{50}=\frac{27}{100}\)
\(\frac{15}{11.14}+\frac{15}{14.17}+\frac{15}{17.20}+...+\frac{15}{72.75}\)
\(=5\left(\frac{3}{11.14}+\frac{3}{14.17}+\frac{3}{17.20}+...+\frac{3}{72.75}\right)\)
\(=5\left(\frac{1}{11}-\frac{1}{14}+\frac{1}{14}-\frac{1}{17}+\frac{1}{17}-\frac{1}{20}+...+\frac{1}{72}-\frac{1}{75}\right)\)\(=5\left(\frac{1}{11}-\frac{1}{75}\right)\)
\(=\frac{64}{165}\)
\(\dfrac{15}{11.14}+\dfrac{15}{14.17}+\dfrac{15}{17.20}+...+\dfrac{15}{68.71}\)
\(=5\left(\dfrac{1}{11}-\dfrac{1}{14}+\dfrac{1}{14}-\dfrac{1}{17}+\dfrac{1}{17}-\dfrac{1}{20}+...+\dfrac{1}{68}-\dfrac{1}{71}\right)\)
\(=5\left(\dfrac{1}{11}-\dfrac{1}{71}\right)\)
\(=5.\dfrac{60}{781}\)
\(=\dfrac{300}{781}\)
theo bài ra ta có:
\(E=\dfrac{15}{11.14}+\dfrac{15}{14.17}+\dfrac{15}{17.20}+...+\dfrac{15}{74.77}\\ \Rightarrow\dfrac{1}{5}E=\dfrac{3}{11.14}+\dfrac{3}{14.17}+\dfrac{3}{17.20}+...+\dfrac{3}{74.77}\\ \dfrac{1}{5}E=\dfrac{1}{11}-\dfrac{1}{14}+\dfrac{1}{14}-\dfrac{1}{17}+\dfrac{1}{17}-\dfrac{1}{20}+...+\dfrac{1}{74}-\dfrac{1}{77}\\ \dfrac{1}{5}E=\dfrac{1}{11}-\dfrac{1}{77}\\ \dfrac{1}{5}E=\dfrac{7}{77}-\dfrac{1}{77}=\dfrac{6}{77}\\ \Rightarrow E=\dfrac{6}{77}.5\\ E=\dfrac{30}{77}\)
5 .\((\)\(\dfrac{3}{11.14}+\dfrac{3}{14.17}+...+\dfrac{3}{74.77}\))
= 5. (\(\dfrac{1}{11}-\dfrac{1}{14}+\dfrac{1}{14}-\dfrac{1}{17}+...+\dfrac{1}{74}-\dfrac{1}{77}\))
= 5.(\(\dfrac{1}{11}-\dfrac{1}{77}\))
= 5. \(\dfrac{6}{77}\)
= \(\dfrac{30}{77}\)
\(\dfrac{1}{3}+\dfrac{1}{6}+\dfrac{1}{10}+...+\dfrac{1}{x.\left(2x+1\right)}=\dfrac{1}{10}\)
\(\Leftrightarrow\dfrac{1}{6}+\dfrac{1}{12}+\dfrac{1}{20}+...+\dfrac{1}{2x.\left(2x+1\right)}=\dfrac{1}{20}\)
\(\Leftrightarrow\dfrac{1}{2.3}+\dfrac{1}{3.4}+\dfrac{1}{4.5}+...+\dfrac{1}{2x.\left(2x+1\right)}=\dfrac{1}{20}\)
\(\Leftrightarrow\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{5}+...+\dfrac{1}{2x}-\dfrac{1}{2x+1}=\dfrac{1}{20}\)
\(\Leftrightarrow\dfrac{1}{2}-\dfrac{1}{2x+1}=\dfrac{1}{20}\)
\(\Leftrightarrow\dfrac{1}{2x+1}=\dfrac{9}{20}\)
\(\Leftrightarrow2x+1=\dfrac{20}{9}\Leftrightarrow x=\dfrac{11}{18}\)
Em giải như XYZ olm em nhé
Sau đó em thêm vào lập luận sau:
\(x\) = \(\dfrac{11}{18}\)
Vì \(\in\) N*
Vậy \(x\in\) \(\varnothing\)
1: \(\Leftrightarrow3x+4=2\)
=>3x=-2
=>x=-2/3
2: \(\Leftrightarrow7x-7=6x-30\)
=>x=-23
3: =>\(5x-5=3x+9\)
=>2x=14
=>x=7
4: =>9x+15=14x+7
=>-5x=-8
=>x=8/5
\(A=\left(\dfrac{1}{3}+\dfrac{3}{5}+\dfrac{1}{15}\right)-\left(\dfrac{3}{4}+\dfrac{2}{9}+\dfrac{1}{36}\right)+\dfrac{1}{64}\)
\(=\dfrac{5+9+1}{15}-\dfrac{27+8+1}{36}+\dfrac{1}{64}\)
=1/64
`3x-15/(5*8)-15/(8*11)-15/(11*14)-...-15/(47*50)=2 1/10`
`3x-(15/(5*8)+15/(8*11)+15/(11*14)+...+15/(47*50))=21/10`
`3x-5(3/(5*8)+3/(8*11)+3/(11*14)+...+3/(47*50))=21/10`
`3x-5(1/5-1/8+1/8-1/11+1/11-1/14+...+1/47-1/50)=21/10`
`3x-5(1/5-1/50)=21/10`
`3x-5*9/50=21/10`
`3x-9/10=21/10`
`3x=21/10+9/10`
`3x=3`
`x=1`