Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
3x+3x+1+3x+2=117
=> 3x.(1+3+32)=117
=> 3x.(1+3+9)=117
=> 3x.13=117
=> 3x=117:13
=> 3x=9
=> 3x=32
=> x=2
3x+3x+1+3x+2=117
=> 3x.(1+3+32)=117
=> 3x.(1+3+9)=117
=> 3x.13=117
=> 3x=117:13
=> 3x=9
=> 3x=32
=> x= 2
tick nha
\(3^x+3^{x-1}+3^{x-2}=117\)
\(\Leftrightarrow3^x+\frac{3^x}{3}+\frac{3^x}{3^2}=117\)
\(\Leftrightarrow3^x.\left(1+\frac{1}{3}+\frac{1}{9}\right)=117\)
\(\Leftrightarrow3^x.\frac{13}{9}=117\)
\(\Leftrightarrow3^x=81\)
\(\Leftrightarrow3^x=3^4\)
\(\Leftrightarrow x=4\)
~Học tốt~
a)
\(\Rightarrow3^x\left(3^2+3+1\right)=117\)
\(\Rightarrow3^x.13=117\)
\(\Rightarrow3^x=9\)
\(\Rightarrow3^x=3^2\)
=>x=2
b)
\(3^{2x+1}=3^{-4}\)
=> 2x+1= - 4
=>\(x=-\frac{5}{2}\)
c)
\(\left(x+2\right)^4=16\)
\(\Rightarrow\left[\begin{array}{nghiempt}\left(x+2\right)^4=2^4\\\left(x+2\right)^4=\left(-2\right)^4\end{array}\right.\)
\(\Rightarrow\left[\begin{array}{nghiempt}x+2=2\\x+2=-2\end{array}\right.\)
\(\Rightarrow\left[\begin{array}{nghiempt}x=0\\-4\end{array}\right.\)
Hằng đẳng thức đó bn:
\(\left(a+b\right)\left(a^2-ab+b^2\right)\)
Thay vào thì: \(-\left(x-3\right)\left(x^2-3x+9\right)=-\left[\left(x-3\right)\left(x^2-3x+3^2\right)\right]\)
\(=-\left(x^3-27\right)=-x^3+27\)
Bài làm:
Ta có: \(\left(x-1\right)^3-\left(x+3\right)\left(x^2-3x+9\right)=\left(x-3\right)^3+3\left(2x+1\right)^2-\left(x^3-5x+1\right)\)
\(\Leftrightarrow x^3-3x^2+3x-1-x^3+27=x^3-9x^2+27x-27+12x^2+12x+3-x^3+5x-1\)
\(\Leftrightarrow6x^2+41x-51=0\)
\(\Leftrightarrow6\left(x^2+\frac{41}{6}x+\frac{1681}{144}\right)-\frac{2905}{24}=0\)
\(\Leftrightarrow\left(x+\frac{41}{12}\right)^2-\frac{\left(\sqrt{2905}\right)^2}{12^2}=0\)
\(\Leftrightarrow\left(x+\frac{41}{12}-\frac{\sqrt{2905}}{12}\right)\left(x+\frac{41}{12}+\frac{\sqrt{2905}}{12}\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x=\frac{\sqrt{2905}-41}{12}\\x=\frac{-\sqrt{2905}-41}{12}\end{cases}}\)
4) \(2.3^x+3^{x-1}=7.\left(3^2+2.6^2\right)\)
\(\Rightarrow2.3^x+3^{x-1}=567\)
\(\Rightarrow7.3^{x-1}=567\)
\(\Rightarrow3^{x-1}=567\div7\)
\(\Rightarrow3^{x-1}=81\)
\(\Rightarrow3^{x-1}=3^4\)
\(\Rightarrow x-1=4\)
\(\Rightarrow x=4+1\)
\(\Rightarrow x=5\)
Vậy \(x=5\)
a)\(\Rightarrow\orbr{\begin{cases}x=0\\x+2=0\end{cases}\Rightarrow\orbr{\begin{cases}x=0\\x=-2\end{cases}}}\)
b)\(\Rightarrow\orbr{\begin{cases}x^2+1=0\\x^2-4=0\end{cases}\Rightarrow\orbr{\begin{cases}x^2=-1\left(VL\right)\\x^2=4\Rightarrow x=2,-2\end{cases}}}\)VL là vô lý do bình phương luôn là số dương
Ủng hộ minhf bằng cachs k đúng nha
bài a mình ko biết làm
bài b;(\(\frac{1}{2}.x-3=\)3
1/2x=6
x=3
bài c:\(\frac{1}{3}^2.3^x\cdot3^4=3^7\)
=>\(\frac{1}{3}^2\cdot3^4=\frac{3^7}{3^x}\)
=>\(\frac{3^7}{3^x}=9\)
vậy x=3^7/3^2=3^5
vậy x = 5
d)\(\left(7x+2\right)^{-1}=9^{-1}\)
=>7x+2=9
vậy 7x=9-2
7x=7
x=1
bài b hình như bn làm sai2 ý tất cả mũ 2 sao mk ko thấy mũ 2 ở đâu
\(3^x+3^{x+1}+3^{x+2}=117\)
\(\Leftrightarrow3^x+3^x.3^1+3^x.3^2=117\)
\(\Leftrightarrow3^x\left(1+3+3^2\right)=117\)
\(\Leftrightarrow3^x.13=117\)
\(\Leftrightarrow3^x=9=3^2\)
\(\Leftrightarrow x=2\)
3^x+3^x+1+3 ^x+2=117
=> 3^x .(1+3+3^2 )=117
=> 3^x .(1+3+9)=117
=> 3^x .13=117
=> 3^x=117:13
=> 3^x=9
=> 3^x=3^2
Vậy x=2