
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.


B1:
a) \(\frac{x+4}{x+3}=\frac{x+9}{x+4}\)
-->(x+4)(x+4)=(x+3)(x+9)
\(x^2\)+4x+4x+16=\(x^2\)+9x+3x+27
\(x^2-x^2\)+4x+4x-9x-3x= - 16+27
- 4x=11
x=\(\frac{-4}{11}\)
b) \(\frac{x-5}{x+3}=\frac{x-4}{x+6}\)
-->(x-5)(x+6)=(x+3)(x-4)
\(x^2\)+6x-5x-30=\(x^2\)-4x+3x-12
\(x^2-x^2\)+6x-5x+4x-3x=30-12
2x=18
x=9
c)\(\frac{3x-1}{3x}=\frac{2x-1}{2x+1}\)
--> (3x-1)(2x+1)=3x.(2x-1)
\(6x^2\)+3x-2x-1=\(6x^2\)-3x
\(6x^2-6x^2\)+3x-2x+3x=1
4x=1
x=\(\frac{1}{4}\)

Giả:
\(\left|x^2-3x\right|\ge0,\forall x\)
\(\left|\left(x+1\right)\left(x+3\right)\right|\ge0,\forall x\)
=> \(\left|x^2-3x\right|+\left|\left(x+1\right)\left(x+3\right)\right|\ge0\)
Do đó: \(\left|x^2-3x\right|+\left|\left(x+1\right)\left(x+3\right)\right|=0\)
\(\Leftrightarrow\hept{\begin{cases}\left|x^2-3x\right|=0\\\left|\left(x+1\right)\left(x+3\right)\right|=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x\left(x-3\right)=0\\\left(x+1\right)\left(x+3\right)=0\end{cases}}\)không có x thỏa mãn.
Bài giải
Ta có : \(\hept{\begin{cases}\left|x^2-3x\right|\ge0\\\left|\left(x+1\right)\left(x+3\right)\right|\ge0\end{cases}}\)
Mà \(\left|x^2-3x\right|+\left|\left(x+1\right)\left(x+3\right)\right|=0\)
\(\Rightarrow\hept{\begin{cases}\left|x^2-3x\right|=0\\\left|\left(x+1\right)\left(x+3\right)\right|=0\end{cases}}\) \(\Rightarrow\hept{\begin{cases}x^2-3x=0\\\left(x+1\right)\left(x+3\right)=0\end{cases}}\) \(\Rightarrow\hept{\begin{cases}x\left(x-3\right)=0\\\text{Hoặc }\left(x+1\right)=0\text{ hoặc }x+3=0\end{cases}}\) ( Không thoản mãn )
\(\Rightarrow\hept{\begin{cases}x=0\text{ hoặc }x-3=0\text{ }\Rightarrow\text{ }x=3\\x=-1\text{ hoặc }x=-3\end{cases}}\) ( Không thỏa mãn )
\(\Rightarrow\text{ }\text{ Không có x nào thoản mãn đề bài }\)


a) \(5^{3x+1}=25^{x+2}\)
\(\Leftrightarrow5^{3x+1}=\left(5^2\right)^{x+2}\)
\(\Leftrightarrow5^{3x+1}=5^{2x+4}\)
\(\Leftrightarrow3x+1=2x+4\)
\(\Leftrightarrow3x-2x=4-1\)
\(\Leftrightarrow x=3\)

\(a,\sqrt{x}=7\left(ĐKXĐ:x\ge0\right)\)
\(\Leftrightarrow\) \(\sqrt{x}=\sqrt{49}\)
\(\Leftrightarrow\) \(x=49\)
Kết hợp với ĐK x >= 0 \(\Rightarrow\) x=49 (t/m )
vậy x=49
\(\)
\(b,\sqrt{x+1}=11\left(ĐKXĐ:x\ge-1\right)\)
\(\Leftrightarrow\sqrt{x+1}\) = \(\sqrt{121}\)
\(\Leftrightarrow\) \(x+1=121\)
\(\Leftrightarrow\) \(x=120\) kết hợp với ĐK x >= -1 \(\Rightarrow\) x=120 ( t/m )
Vậy x=120

a)\(\left(1-x\right)^3=216\)
\(\Rightarrow1-x=6\)
\(\Rightarrow x=-5\)
b)\(3^{x+1}-3^x=162\)
\(\Rightarrow3^x\left(3-1\right)=162\)
\(\Rightarrow3^x=81\)
\(\Rightarrow3^x=3^4\)
\(\Rightarrow x=4\)
c)\(5^{x+1}-2.5^x=375\)
\(\Rightarrow5^x\left(5-2\right)=375\)
\(\Rightarrow5^x.3=375\)
\(\Rightarrow5^x=125\)
\(\Rightarrow5^x=5^3\)
\(\Rightarrow x=3\)

Đặt bt trên là A nha
Đổi |x-1|=|1-x|
Suy ra A=|1-x|+x-2|+|x-3|
Áp dụng BĐTGTTĐ ta có
A=|1-x|+x-2|+|x-3|\(\ge\)|1-x+x-3|=2
Dấu = xảy ra khi \(\hept{\begin{cases}x-2=0\\1< x< 3\end{cases}}\)đồng thời xảy ra
Vậy x =2
b,
\(\left|3x+\frac{1}{2}\right|\ge0\)
\(\left|3x+\frac{1}{6}\right|\ge0\)
..........
\(\left|3x+380\right|\ge0\)
Suy ra đề bài \(\ge\)0
suy ra 58x \(\ge\)0
Suy ra \(3x+\frac{1}{2}+3x+\frac{1}{6}+......+3x+380=58x\)
Tự tính nhé hok tốt
Ta có: |3x - 1| = |x + 3|
=> \(\orbr{\begin{cases}3x-1=x+3\\1-3x=x+3\end{cases}}\)
=> \(\orbr{\begin{cases}2x=4\\4x=-2\end{cases}}\)
=> \(\orbr{\begin{cases}x=2\\x=-\frac{1}{2}\end{cases}}\)
\(\left|3x-1\right|=\left|x+3\right|\)
=> \(\orbr{\begin{cases}3x-1=x+3\\3x-1=-x-3\end{cases}}\)
=>\(\orbr{\begin{cases}2x=4\\4x=-2\end{cases}}\)=> \(\orbr{\begin{cases}x=2\\x=-\frac{1}{2}\end{cases}}\)