
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.


a) \(\frac{2}{3a}-\frac{3}{a}=\frac{2}{3a}-\frac{9}{3a}=\frac{-7}{3a}=\frac{7}{15}\Leftrightarrow-3a=15\Leftrightarrow a=-5\)
b)\(2x^3-1=15\Leftrightarrow2x^3=16\Leftrightarrow x^3=8\Leftrightarrow x=2\)
\(\Rightarrow\frac{2+16}{9}=\frac{y-15}{16}=2\Leftrightarrow y-15=32\Leftrightarrow y=47\)
c) \(\left|x\right|=3\Rightarrow\orbr{\begin{cases}x=-3\\x=3\end{cases}}\) rồi xét 2 trường hợp để tính A nhé :)
Bài 1: ĐK của a: \(a\ne0\)
Quy đồng VT ta có: \(\frac{2a-9a}{3a^2}=\frac{7}{15}\)
\(\Leftrightarrow\frac{-7a}{3a^2}=\frac{7}{15}\)
\(\Leftrightarrow-7a.15=3a^2.7\)
\(\Leftrightarrow-105a=21a^2\)
\(\Leftrightarrow-105a-21a^2=0\)
\(\Leftrightarrow a\left(-105-21a\right)=0\)
\(\Leftrightarrow\hept{\begin{cases}a=0\left(l\right)\\-105-21a=0\end{cases}\Leftrightarrow a=-5\left(n\right)}\)
Vậy:..

\(\left(3x-1\right)^3=\left(\frac{2}{3}\right)^3\)
=> 3x -1 = 2/3
3x = 5/3
x = 5/9
học tốt ^^
\(\left(x^4\right)^2=x^{12-5}\)
\(x^8-x^7=0\)
\(x^7\cdot x-x^7=0\)
\(x^7\cdot\left(x-1\right)=0\)
+) x^7 = 0 => x = 0
+) x -1 = 0 => x = 1
Vậy,...........
học tốt ^^

Ta có : \(\frac{x}{3}=\frac{y}{5}\Rightarrow5x=3y\Rightarrow x=\frac{3y}{5}\)
Thay \(x=\frac{3y}{5}\)vào biểu thức ta được : \(\left(\frac{3y}{5}\right)^2-y^2=8\)
\(\Leftrightarrow\frac{9y^2}{25}-y^2=8\Leftrightarrow9y^2-25y^2=8.25\Leftrightarrow-16y^2=200\Leftrightarrow y^2=-\frac{25}{5}\left(\text{vô lý}\right)\)
b) \(\frac{x}{2}=\frac{y}{5}\Leftrightarrow5x=2y\Leftrightarrow x=\frac{2y}{5}\)
Thay \(x=\frac{2y}{5}\)vào biểu thức ; ta có : \(\frac{2y}{5}\cdot y=90\Leftrightarrow2y^2=450\Leftrightarrow y^2=225\Leftrightarrow y=15\)
Với \(y=15\Rightarrow x=\frac{2.15}{5}=6\)
Vậy .....
\(\frac{x}{2}=\frac{y}{5}\)và \(xy=90\)
đặt \(\frac{x}{2}=\frac{y}{5}=k\)
\(\Rightarrow x=2k;y=5k\)
ta có : \(xy=2k\cdot5k=10k^2=90\)
\(\Rightarrow k^2=90:10=9\)
\(\Rightarrow\orbr{\begin{cases}k=3\\k=-3\end{cases}}\)
TH1: \(\hept{\begin{cases}x=3\cdot2=6\\y=3\cdot5=15\end{cases}}\)
TH2: \(\hept{\begin{cases}x=-3\cdot2=-6\\y=-3\cdot5=-15\end{cases}}\)

a/ \(\Rightarrow\frac{\left(-3\right)^n}{81}=-27\Rightarrow\left(-3\right)^n=-2187\Rightarrow\left(-3\right)^n=\left(-3\right)^7\Rightarrow n=7\)
b/ \(\Rightarrow-\frac{3}{8}-x+\frac{5}{6}=\frac{4}{3}\Rightarrow\frac{11}{24}-x=\frac{4}{3}\Rightarrow x=-\frac{7}{8}\)

\(\frac{1}{4}+\frac{1}{3}:2x=-5\)
\(\frac{1}{3}:2x=-5-\frac{1}{4}\)
\(\frac{1}{3}:2x=\frac{-21}{4}\)
\(2x=\frac{1}{3}:\frac{-21}{4}\)
\(2x=\frac{-4}{63}\)
\(x=\frac{-4}{63}:2\)
\(x=\frac{-2}{63}\)
\(\)
\(\frac{1}{4}+\frac{1}{3}:2x=-5\)
\(\Rightarrow\frac{1}{3}:2x=-\frac{21}{4}\)
\(\Rightarrow2x=\frac{-4}{63}\)
\(\Rightarrow x=\frac{-2}{63}\)
\(\left(3x-\frac{1}{4}\right)\left(x+\frac{1}{2}\right)=0\)
\(\Rightarrow\orbr{\begin{cases}3x-\frac{1}{4}=0\\x+\frac{1}{2}=0\end{cases}\Rightarrow\orbr{\begin{cases}x=\frac{1}{12}\\x=\frac{-1}{2}\end{cases}}}\)
\(\left(2x-5\right)\left(\frac{3}{2}x+9\right)\left(0,3x-12\right)=0\)
Th1 : \(2x-5=0\Rightarrow x=\frac{5}{2}\)
Th2 : \(\frac{3}{2}x+9=0\Rightarrow x=-6\)
Th3 : \(0,3x-12=0\Rightarrow x=\frac{12}{0,3}\)

a, \(\left|2x-\frac{3}{5}\right|+7=9\)
=> \(\left|2x-\frac{3}{5}\right|=2\) => \(\orbr{\begin{cases}2x-\frac{3}{5}=2\\2x-\frac{3}{5}=-2\end{cases}}\)
=> \(\orbr{\begin{cases}x=\frac{13}{10}\\x=-\frac{7}{10}\end{cases}}\)
b, \(\left|5-3x\right|-1=\frac{1}{2}\) <=> \(\left|5-3x\right|=\frac{3}{2}\)
=> \(\orbr{\begin{cases}5-3x=\frac{3}{2}\\5-3x=-\frac{3}{2}\end{cases}=>\orbr{\begin{cases}x=\frac{7}{6}\\x=\frac{13}{6}\end{cases}}}\)
a.[2x-3/5]=9-7
[2x-3/5]=2 \(\hept{\begin{cases}2x=\frac{13}{5}\\2x=-\frac{7}{5}\end{cases}}\) \(\hept{\begin{cases}x=\frac{13}{10}\\x=\frac{7}{10}\end{cases}}\)
\(\hept{\begin{cases}2x-\frac{3}{5}=2\\2x-\frac{3}{5}=-2\end{cases}}\)
[5-3x]-1=1/2
[5-3x]=1/2
\(\hept{\begin{cases}5-3x=\frac{1}{2}\\5-3x=-\frac{1}{2}\end{cases}}\)
\(\hept{\begin{cases}3x=\frac{9}{2}\\3x=\frac{11}{2}\end{cases}}\)
\(\hept{\begin{cases}x=\frac{3}{2}\\x=\frac{11}{6}\end{cases}}\)
đó chỉ cần vậy là xong

a) \(2\frac{1}{3}+\left(x-\frac{3}{2}\right)=\left(3-\frac{3}{2}\right)x\)
\(2\frac{1}{3}+x-\frac{3}{2}=3x-\frac{3}{2}x\)
\(2\frac{1}{3}-\frac{3}{2}=3x-\frac{3}{2}x-x\)
\(\frac{5}{6}=3x-\frac{3}{2}x-x\)
\(\frac{5}{6}=\left(3-\frac{3}{2}-1\right)x\)
\(\frac{5}{6}=\frac{1}{2}x\)
\(x=\frac{5}{6}:\frac{1}{2}\)
\(x=\frac{5}{3}\)
b) |3x-4|+|3y+5|=0
ĐK : \(\hept{\begin{cases}\left|3x-4\right|\ge0\\\left|3y+5\right|\ge0\end{cases}}\Leftrightarrow\left|3x-4\right|+\left|3y+5\right|\ge0\)
Mà |3x-4|+|3y+5|=0 nên :
\(\Rightarrow\hept{\begin{cases}3x-4=0\\3y+5=0\end{cases}}\Rightarrow\hept{\begin{cases}3x=4\\3y=-5\end{cases}}\Rightarrow\hept{\begin{cases}x=\frac{4}{3}\\y=\frac{-5}{3}\end{cases}}\)
Vậy x=4/3 ; y=-5/3
c) \(\left|x+\frac{19}{5}\right|+\left|y+\frac{1890}{1975}\right|+\left|z-2004\right|=0\)
ĐK : \(\hept{\begin{cases}\left|x+\frac{19}{5}\right|\ge0\\\left|y+\frac{1890}{1975}\right|\ge0\\\left|z-2004\right|\ge0\end{cases}}\Leftrightarrow\left|x+\frac{19}{5}\right|+\left|y+\frac{1890}{1975}\right|+\left|z-2004\right|\ge0\)
Mà \(\left|x+\frac{19}{5}\right|+\left|y+\frac{1890}{1975}\right|+\left|z-2004\right|=0\) nên :
\(\Rightarrow\hept{\begin{cases}x+\frac{19}{5}=0\\y+\frac{1890}{1975}=0\\z-2004=0\end{cases}}\Rightarrow\hept{\begin{cases}x=-\frac{19}{5}\\y=-\frac{1890}{1975}\\z=2004\end{cases}}\)
Vậy ...

1. Tìm x, biết :
a. ( x - \(\frac{3}{4}\)) \(^2\)= 0
=> x - \(\frac{3}{4}\)= 0
=> x = 0 + \(\frac{3}{4}\)
=> x = \(\frac{3}{4}\)
b. ( x + \(\frac{1}{2}\)) \(^2\)= \(\frac{9}{64}\)
=> ( x + \(\frac{1}{2}\)) \(^2\)= ( \(\frac{3}{8}\)) \(^2\)
=> x + \(\frac{1}{2}\)= \(\frac{3}{8}\)
=> x = \(\frac{3}{8}\)- \(\frac{1}{2}\)
=> x = \(\frac{-1}{8}\)
c. \(\frac{\left(-2\right)^x}{16}=-8\)
=> \(\frac{\left(-2\right)^x}{16}=\frac{-8}{1}=\frac{-128}{16}\)
=> ( -2)\(^x\)= -128
=> ( -2 ) \(^x\)= ( -2) \(^7\)
=> x = 7

Ta có: \(\hept{\begin{cases}\left(3x-5\right)^{2010}\ge0\forall x\\\left(y-1\right)^{2012}\ge0\forall y\\\left(x-z\right)^{2014}\ge0\forall x,z\end{cases}}\)
\(\Rightarrow\left(3x-5\right)^{2010}+\left(y-1\right)^{2012}+\left(x-z\right)^{2014}\ge0\forall x,y,z\)
Do đó: \(\left(3x-5\right)^{2010}+\left(y-1\right)^{2012}+\left(x-z\right)^{2014}=0\)
\(\Leftrightarrow\hept{\begin{cases}3x-5=0\\y-1=0\\x-z=0\end{cases}\Leftrightarrow\hept{\begin{cases}x=\frac{5}{3}\\y=1\\z=\frac{5}{3}\end{cases}}}\)
Vậy ...
Vì mỗi hạng tử bên VT đều > 0 nên VT > 0
Dấu "=" xảy ra khi từng hạng tử vế trái bằng 0
Tức là \(\hept{\begin{cases}3x-5=0\\y-1=0\\x-z=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=z=\frac{5}{3}\\y=1\end{cases}}\)