Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(a,\left(\frac{3}{8}+-\frac{3}{4}+\frac{7}{12}\right):\frac{5}{6}+\frac{1}{2}\)
= \(\left(-\frac{3}{8}+\frac{7}{12}\right):\frac{5}{6}+\frac{1}{2}\)
= \(\frac{5}{24}:\frac{5}{6}+\frac{1}{2}\)
= \(\frac{1}{4}+\frac{1}{2}\)
= \(\frac{3}{4}\)
b)\(-\frac{7}{3}.\frac{5}{9}+\frac{4}{9}.\left(-\frac{3}{7}\right)+\frac{17}{7}\)
=\(-\frac{35}{27}+\left(-\frac{4}{21}\right)+\frac{17}{7}\)
= \(-\frac{35}{27}+\frac{47}{21}\)
= \(\frac{178}{189}\)
c) \(\frac{117}{13}-\left(\frac{2}{5}+\frac{57}{13}\right)\)
= \(\frac{117}{13}-\frac{311}{65}\)
= \(\frac{274}{65}\)
d) \(\frac{2}{3}-0,25:\frac{3}{4}+\frac{5}{8}.4\)
= \(\frac{2}{3}-\frac{1}{4}:\frac{3}{4}+\frac{5}{8}.4\)
= \(\frac{2}{3}-\frac{1}{3}+\frac{5}{2}\)
= \(\frac{1}{3}+\frac{5}{2}\)
= \(\frac{17}{6}\)
a. x = {3;-3}
b. x thuộc rỗng
c. x2-4=0
x2 = 4
x={2;-2}
d. x2+1=82
x2 =83
x thuộc rỗng
e. (2x)2=6
x thuộc rỗng
f. (x-1)2=9
TH1: x-1=3=>x=4
TH2: x-1=-3=>x=-2
Vậy x={4;-2}
g.(2x+3)2=25
TH1: 2x+3=5=> x=1
Th2: 2x+3=-5=>x=-4
VẬY X={1;-4}
a, x^2= 9
=>\(\sqrt{9}=3\)
b,\(x^2=5=>x=\sqrt{5}\)
c, x^2-4=0
=>x^2=4
=>x=2
d, x^2+1=82
=>x^2=81 =>\(\sqrt{81}=9\)
3, 2x^2=6
=>x= \(\sqrt{6}\)
f, {x-1} ^2=9
=> x-1=3
=>x=2
g{ 2x+3}^2=25
=> 2x+3=5
=>2x=2
=>x=1
câu E
\(\left\{{}\begin{matrix}x\ne\dfrac{5}{2}\\\left(2x-5\right)\left(5-2x\right)=-\left(\dfrac{3}{2}\right)^4\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x\ne\dfrac{5}{2}\\\left|2x-5\right|=\left(\dfrac{3}{2}\right)^2\end{matrix}\right.\)
\(\left[{}\begin{matrix}\left\{{}\begin{matrix}x< \dfrac{5}{2}\\2x-5=-\left(\dfrac{3}{2}\right)^2\Rightarrow x=\dfrac{11}{8}< \dfrac{5}{2}\left(n\right)\end{matrix}\right.\\\left\{{}\begin{matrix}x>\dfrac{5}{2}\\2x-5=\left(\dfrac{3}{2}\right)^2\Rightarrow x=\dfrac{29}{8}>\dfrac{5}{2}\left(n\right)\end{matrix}\right.\end{matrix}\right.\)
câu F (bạn cho vào lớp 7.2=lớp 14 nhé. )
`@` `\text {Ans}`
`\downarrow`
\(\left(\dfrac{3}{5}\right)^{2x-1}=\left(\dfrac{9}{25}\right)^3\)
`=>`\(\left(\dfrac{3}{5}\right)^{2x-1}=\left(\dfrac{3^2}{5^2}\right)^3\)
`=>`\(\left(\dfrac{3}{5}\right)^{2x-1}=\left(\dfrac{3}{5}\right)^6\)
`=> 2x - 1 = 6`
`=> 2x=6+1`
`=> 2x=7`
`=> x = 7/2`
`=> x = 3,5`
Vậy, `x = 3,5`
`@` `\text {Kaizuu lv uuu}`