Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
7x+2/5x+7=7x-1/5x+1=>37/5x+7=34/5x+1=>37/5x-34/5x=1-7=>3/5x=-6=>x=-6:3/5=-10 vay x=-10 nho ****
a) \(\left(\frac{1}{7}x-\frac{2}{3}\right)\left(-\frac{1}{5}x+\frac{3}{5}\right)=0\)
\(\Rightarrow\orbr{\begin{cases}\frac{1}{7}x-\frac{2}{3}=0\\-\frac{1}{5}x+\frac{3}{5}=0\end{cases}}\)\(\Rightarrow\orbr{\begin{cases}\frac{1}{7}x=\frac{2}{3}\\-\frac{1}{5}x=-\frac{3}{5}\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}x=\frac{14}{3}\\x=3\end{cases}}\)
b)\(\frac{1}{10}x-\frac{4}{5}x+1=0\)
\(\Leftrightarrow x.\left(\frac{1}{10}-\frac{4}{5}\right)+1=0\)
\(\Rightarrow-\frac{7}{10}x=-1\)
\(\Rightarrow x=\frac{10}{7}\)
c)\(\left(2x-\frac{1}{3}\right).\left(5x+\frac{2}{7}\right)=0\)
\(\Rightarrow\orbr{\begin{cases}2x-\frac{1}{3}=0\\5x+\frac{2}{7}=0\end{cases}\Rightarrow\orbr{\begin{cases}2x=\frac{1}{3}\\5x=-\frac{2}{7}\end{cases}}}\)
\(\Rightarrow\orbr{\begin{cases}x=\frac{1}{6}\\x=-\frac{2}{35}\end{cases}}\)
a, (1/7 . x - 2/3) . (-1/5 . x + 3/5) = 0
Suy ra : 1/7 .x -2/3 = 0 hoặc -1/5 .x + 3/5 =0
Vậy : 1/7 .x = 2/3 hoặc -1/5 .x = 3/5
x =2/3 : 1/7 hoặc x = 3/5 : (-1/5)
x = 14/3 hoặc x = -3
b, 1/10 .x - 4/5 .x + 1 =0
x . (1/10 - 4/5) + 1 = 0
x . (-7/10) + 1 = 0
x . -7/10 =0 +1 = 1
x = 1 : (-7/10)
x = -10/7
c, (2x - 1/3 ) . (5x +2/7) = 0
Suy ra : 2x - 1/3 = 0 hoặc 5x + 2/7 = 0
Vậy : 2x = 1/3 hoặc 5x = 2/7
x = 1/3 : 2 hoặc x = 2/7 : 5
x = 1/6 hoặc x = 2/35
Ta có: \(\left|x+\frac{1}{3}\right|+4=1\)
\(\Rightarrow\left|x+\frac{1}{3}\right|=1-4=-3\)
Vậy suy ra không có giá trị của x vì không có giá trị tuyệt đối nào là âm
\(\left|x+\frac{1}{3}\right|+4=1\)
\(\left|x+\frac{1}{3}\right|=1-4\)
\(\left|x+\frac{1}{3}\right|=-3\)
\(\Rightarrow\) Không có giá trị x thỏa mãn
\(B\left(x\right)=x^5+3x^3+x=x\left(x^4+3x^2+1\right)=x\left(x^4+x^2+x^2+1+x^2\right)=x\left[x^2\left(x^2+1\right)+x^2+1+x^2\right]\)
\(=x\left[\left(x^2+1\right)\left(x^2+1\right)+x^2\right]=x\left[\left(x^2+1\right)^2+x^2\right]\)
Vì: \(x^2+1>0,x^2\ge0\)nên \(\left(x^2+1\right)^2+x^2>0\)
Vậy B(x) có nghiệm khi x=0
Ta thấy :
|x| ≥ 0
|x + 1| ≥ 0
|x + 2| ≥ 0
|x + 3| ≥ 0
Cộng vế với vế ta được :
|x| + |x + 1| + |x + 2| + |x + 3| ≥ 0
Hay 5x ≥ 0 => x ≥ 0
=> |x| + |x + 1| + |x + 2| + |x + 3| = x + x + 1 + x + 2 + x + 3 = 5x
<=>4x + 6 = 5x
=> 5x - 4x = 6
=> x = 6
Vậy x = 6
\(\frac{5x+7}{4}+\frac{3x+5}{8}>\frac{9x+4}{5}\)
\(\frac{10\cdot\left(5x+7\right)}{40}+\frac{5\cdot\left(3x+5\right)}{40}>\frac{8\cdot\left(9x+4\right)}{40}\)
10.(5x + 7) + 5.(3x + 5) > 8.(9x + 4)
10.(5x + 7) + 5.(3x + 5) - 8.(9x + 4) > 0
50x + 70 + 15x + 25 - 72x - 32 > 0
- 7x + 63 > 0
- 7.(x - 9) > 0
\(\Rightarrow x-9<0\Rightarrow x<9\)
Thôi dc rồi mình làm theo ý mình nhé.
\(A\left(x\right)=4x^4-6x^2-7x^3-5x-6\)
\(B\left(x\right)=-5x^2+7x^3+5x+4-4x^4\)
Bài này không yêu cầu sắp xếp nên thôi tính luôn. Mình chỉ sắp xếp lại KQ thôi
a/ - Tính:
\(M\left(x\right)=A\left(x\right)+B\left(x\right)\)
\(M\left(x\right)=4x^4+6x^2-7x^3-5x-6-5x^2+7x^3+5x+4-4x^4\)
\(M\left(x\right)=x^2-2\)
- Tìm nghiệm:
\(M\left(x\right)=x^2-2=0\Leftrightarrow x^2=2\Leftrightarrow x=-\sqrt{2};x=\sqrt{2}\)
b/ \(C\left(x\right)+B\left(x\right)=A\left(x\right)\Rightarrow C\left(x\right)=A\left(x\right)-B\left(x\right)\)
\(C\left(x\right)=4x^4-6x^2-7x^3-5x-6-\left(-5x^2+7x^3+5x+4-4x^4\right)\)
\(C\left(x\right)=4x^4-6x^2-7x^3-5x-6+5x^2-7x^3-5x-4+4x^4\)
\(C\left(x\right)=8x^4-14x^3-x^2-10x-10\)
\(\left(3,25-\frac{2}{5}x\right)\div\frac{-7}{4}=-3\)
\(\Rightarrow\)\(\left(3,25-\frac{2}{5}x\right)\div\frac{-7}{4}=-3\)
\(\Rightarrow\)\(\frac{13}{4}-\frac{2}{5}x=\frac{21}{4}\)
\(\Rightarrow\)\(\frac{2}{5}x=-2\)
\(\Rightarrow\)\(x=-5\)
x=-5 nha
~HT~
K cho mình nha
@@@@@@@@@@@@@@@@@