K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 8 2021

Trả lời:

2 ( x + 1 )2 = x ( x - 1 ) - 4

<=> 2 ( x2 + 2x + 1 ) = x2 - x - 4

<=> 2x2 + 4x + 2 = x2 - x - 4

<=> 2x2 + 4x + 2 - x2 + x + 4 = 0

<=> x2 + 5x + 6 = 0

<=> x2 + 2x + 3x + 6 = 0

<=> ( x2 + 2x ) + ( 3x + 6 ) = 0

<=> x ( x + 2 ) + 3 ( x + 2 ) = 0

<=> ( x + 2 ) ( x + 3 ) = 0

<=> x + 2 = 0 hoặc x + 3 = 0

<=> x = - 2 hoặc x = - 3

Vậy x = - 2 hoặc x = - 3 là nghiệm của pt.

\(2\left(x+1\right)^2=x\left(x-1\right)-4\)

\(\Leftrightarrow2\left(x^2+2x+1\right)=x^2-x-4\)

\(\Leftrightarrow2x^2+4x+2=x^2-x-4\)

\(\Leftrightarrow x^2+5x+6=0\)

\(\Leftrightarrow\left(x-1\right)\left(x-6\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x-1=0\\x-6=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=1\\x=6\end{cases}}}\)

#H

12 tháng 1 2020

\(\frac{1-x}{x^2+x+1}-\frac{x-1}{x^2-x+1}=\frac{3}{\left[x\left(x^4+x^2+1\right)\right]}\)

\(\Leftrightarrow\frac{\left(1-x\right)x\left(x^2-x+1\right)\left(x^4+x^2+1\right)}{x\left(x^2+x+1\right)\left(x^2-x+1\right)\left(x^4+x^2+1\right)}\)\(-\)\(\frac{x\left(x-1\right)\left(x^2+x+1\right)\left(x^4+x^2+1\right)}{x\left(x^2+x+1\right)\left(x^2-x+1\right)\left(x^4+x^2+1\right)}\)\(=\)\(\frac{3\left(x^2-x+1\right)\left(x^2+x+1\right)}{x\left(x^2+x+1\right)\left(x^2-x+1\right)\left(x^4+x^2+1\right)}\)

\(\Rightarrow\left(1-x\right)x\left(x^2-x+1\right)\left(x^4+x^2+1\right)-x\left(x-1\right)\left(x^2+x+1\right)\left(x^4+x^2+1\right)=\)\(3\left(x^2-x+1\right)\left(x^2+x+1\right)\)

\(\Leftrightarrow\left(x-x^2\right)\left(x^2-x+1\right)\left(x^4+x^2+1\right)-\left(x^2-x\right)\left(x^2+x+1\right)\left(x^4+x^2+1\right)=\)\(\left(3x^2-3x+3\right)\left(x^2+x+1\right)\)

\(\Leftrightarrow\left(x^3-x^2+x-x^4+x^3-x^2\right)\left(x^4+x^2+1\right)-\left(x^4+x^3+x^2-x^3-x^2-x\right)\left(x^4+x^2+1\right)=\) \(3x^4+3x^3+3x^2-3x^3-3x^2-3x+3x^2+3x+3\)

\(\Leftrightarrow\left(2x^3-2x^2+x-x^4\right)\left(x^4+x^2+1\right)-\left(x^4-x\right)\left(x^4+x+1\right)=3x^4+3x^2+3\)

\(\Leftrightarrow\left(x^4+x^2+1\right)\left(2x^3-2x^2+x-x^4-x^4+x\right)=3x^4+3x^2+3\)

\(\Leftrightarrow\left(x^4+x^2+1\right)\left(2x^3-2x^2+2x-2x^4\right)=3x^4+3x^2+3\)

\(\Leftrightarrow2x^7-2x^6+2x^5-2x^8+2x^5-2x^4+2x^3-2x+2x^3-2x^2+2x-2x^4-3x^4-3x^2-3=0\)

\(\Leftrightarrow2x^7-2x^6+4x^5-2x^8-7x^4+x^2-3=0\)

Đến đây thì chịu òi :^ Sr nha

13 tháng 1 2020

\(\frac{1-x}{x^2+x+1}-\frac{x-1}{x^2-x+1}=\frac{3}{x\left(x^4+x^2+1\right)}\)

Ta có \(x^4+x^2+1=\left(x^2+1\right)^2-x^2=\left(x^2-x+1\right)\left(x^2+x+1\right)\)

=> \(\left(1-x\right)\left(\frac{1}{x^2+x+1}+\frac{1}{x^2-x+1}\right)=\frac{3}{x\left(x^4+x^2+1\right)}\)

<=>\(\left(1-x\right)\left(2x^2+2\right).x=3\)

Do \(2x^2+2>0\)

=> \(\left(1-x\right).x>0\)

=> \(0< x< 1\)=> \(2x^2+2< 4\)

Pt<=> \(\left(x-x^2\right)\left(2x^2+2\right)=3\)

Mà \(x-x^2\le\frac{1}{4};2x^2+2< 4\)

=> \(VT< 1\)

=> PT vô nghiệm 

x = 1/8 - y/4 = (1-2y)/8 
<=> x = 5*8/(1-2y) ; thấy 1-2y là số lẻ nên UCLN(8,1-2y) = 1 
do đó x/8 = 5/(1-2y) (*) 
x, y nguyên khi 1-2y phải là ước của 5 
* 1-2y = -1 => y = 1 => x = -40 
* 1-2y = 1 => y = 0 => x = 40 
* 1-2y = -5 => y = 3 => x = -8 
* 1-2y = 5 => y = -2 => x = 8 
vậy có 4 cặp (x,y) nguyên (-40,1) ; (40, 0) ; (-8, -5) ; (8, 5) .

9 tháng 11 2016

ai giúp với huhu phần thưởng là 1 cái acc Bang bang cho ai trả lời đúng nếu người đó cần

30 tháng 11 2017

(x2-1)3-(x4+x2+1)(x2-1)=0

<=> (x2-1)[(x2-1)2-x4-x2-1]=0

<=> (x-1)(x+1)[x4-2x2+1-x4-x2-1]=0

<=> (x-1)(x+1)(-3x2)=o

<=> 3x2(x-1)(x+1)=0 

=> x1=0; x2=-1; x3=1

Đáp số: x1=0; x2=-1; x3=1

25 tháng 10 2015

(x+2)(x^2-2x+4)-x(x-1)(x+1)+2x=2

<=> x3 - 2x2 + 4x + 2x2 - 4x + 8 - x(x2 - 1) + 2x = 2

<=> x3 + 8 - x3 + x + 2x = 2

<=> 3x + 8 = 2

<=> x = -2