Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=2^2+2^2+2^3+2^4+...+2^{2006}\)
\(2A=2^3+2^3+2^4+2^5+...+2^{2007}\)
\(2A-A=2^{2007}+2^3-\left(2^2+2^2\right)\)
\(A=2^{2007}+8-8\)
\(A=2^{2007}\)
\(\Rightarrow\text{ }2A=2^{2008}=2^{2\cdot1004}=\left(2^2\right)^{1004}=4^{1004}\)
\(\Rightarrow\text{ }x=1004\)
Đặt B=2^2+2^3....+2^2006
2B=2^3+2^4+....+2^2007
=>2B-B=(2^3+2^4+...+2^2007)-(2^2+2^3+....+2^2006)
B=2^2007-2^2
=>A=2^2007-2^2+2^2
A=2^2007
=>2A=2^2008
=>2A=4^1004
Vậy x=1004
\(2^{10}.2^{x+4}=64^5\)
\(\Leftrightarrow2^{x+14}=2^{30}\)
\(\Leftrightarrow x+14=30\)
\(\Leftrightarrow x=16\)
\(5^x+5^{x+3}=630\)
\(\Rightarrow5^x.1+5^x.125=630\)
\(\Rightarrow5^x.126=630\)
\(\Rightarrow5^x=5\)
\(\Rightarrow x=1\)
\(x+\left(x+1\right)+\left(x+2\right)+\left(x+3\right)+..............+\left(x+100\right)=7450\)
\(\Rightarrow\left(x+x+x+x+.........+x\right)+\left(1+2+3+..........+100\right)=7450\)
\(101x+5050=7450\)
Đến đây tự tính
Bài 1 :
\(2^x.8=512\)
\(2^x=512:8\)
\(2^x=64\)
\(2^x=2^6\)
\(\Rightarrow x=6\)
\(b,\left(2x+1\right)^3=125\)
\(\left(2x+1\right)^3=5^3\)
\(\Rightarrow2x+1=5\)
\(\Rightarrow2x=4\)
\(\Rightarrow x=2\)
\(c,x^{20}=x\)
\(\Rightarrow\orbr{\begin{cases}x=0\\x=1\end{cases}}\)
\(d,\left(x-3\right)^{10}=0\)
\(\Rightarrow x-3=0\)
\(\Rightarrow x=3\)
\(5^x+5^{x+2}=650;5^x.26=650;5^x=25;x=2\)
\(2^x+2^{x+3}=144;2^x.9=144;2^x=16;x=4\)
\(3^{x-1}+5.3^{x-1}=162;3^{x-1}.6=162;3^{x-1}=27;x=4\)
\(\left(x-5\right)^4=\left(x-5\right)^6\)
\(\rightarrow x-5=0\&x-5=1\) hoặc x - 5 = - 1
\(x-5=1;x=6;x-5=0;x=5;x-5=-1;x=4\)
\(\left(2^2:4\right).2^n=4;2^n=2^2;n=2\)
B1. 2x + 3 + 22 = 72
=> 2x + 3 + 4 = 72
=> 2x + 3 = 72 - 4
=> 2x + 3 = 68
=> ko có gtri x
B2 : Ta có : A = 1 + 2 + 22 + 23 + 24 + 25 + 26 + ... + 22001 + 22002
= (1 + 2) + (22 + 23 + 24) + (25 + 26 + 27) + ... + (22000 + 22001 + 22002)
= 3 + 22.(1 + 2 + 22) + 25.(1 + 2 + 22 ) + ... + 22000 . (1 + 2 + 22)
= 3 + 22.7 + 25.7 + ... + 22000 . 7
= 3 + (22 + 25 + .... + 22000) . 7
=> Số dư của 7 là 3
\(5^2+13+x^2=2^3\)
\(\Leftrightarrow38+x^2=8\)
\(\Leftrightarrow x^2=-30\)( loại vì x^2 luôn lớn hơn hoặc bằng 0)
Vậy ko có giá trị x nào thỏa mãn dề bài
52 + ( 13 + x2 ) = 32
25 + 13 + x2 =9
x2 = -29 (vô lí) (vì x2>=0 với mọi x )
=> ko có già trị x thỏa mãn
Bài giải
\(\left(x-6\right)^3=\left(x-6\right)^2\)
\(\Rightarrow\text{ }\left(x-6\right)^3-\left(x-6\right)^2=0\)
\(\Rightarrow\text{ }\left(x-6\right)^2\left[\left(x-6\right)-1\right]=0\)
\(\Rightarrow\text{ }\left(x-6\right)^2\left[x-6-1\right]=0\)
\(\Rightarrow\text{ }\left(x-6\right)^2\left[x-7\right]=0\)
\(\Rightarrow\orbr{\begin{cases}\left(x-6\right)^2=0\\x-7=0\end{cases}}\) \(\Rightarrow\orbr{\begin{cases}x-6=0\\x=7\end{cases}}\) \(\Rightarrow\orbr{\begin{cases}x=6\\x=7\end{cases}}\)
\(\Rightarrow\text{ }x\in\left\{6\text{ ; }7\right\}\)
\(7^{2x-3}=7^2\cdot5+7^2\cdot2\)
\(7^{2x-3}=7^2\left(5+2\right)\)
\(7^{2x-3}=7^2\cdot7\)
\(7^{2x-3}=7^3\)
\(2x-3=3\)
\(2x=6\)
\(x=3\)
\(7^{2x-3}-2.49=49.5\)
\(7^{2x-3}-2.49=245\)
\(7^{2x-3}-2=245:49\)
\(7^{2x-3}-2=5\)
\(7^{2x-3}=5+2\)
\(7^{2x-3}=7\)
2x-3=1
2x=1+3
2x=4
x=4:2
x=2
vậy x=2
\(2^x+2^{x+2}+2^{x+3}=832\)
\(\Rightarrow2^x\left(1+2^2+2^3\right)=832\)
\(\Rightarrow2^x\cdot13=832\)
\(\Rightarrow2^x=64\)
\(\Leftrightarrow x=6\)
2x + 2x+2 + 2x+3 = 832
=> 2x + 2x . 22 + 2x + 23 = 832
=> 2x + 2x . 4 + 2x + 8 = 832
=> 2x ( 1 + 4 + 8 ) = 832
=> 2x . 13 = 832
=> 2x = 64
=> 2x = 26
=> x = 6
Vậy x = 6