K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 9 2020

a, \(|x-1|+|2x-y+3|=0\)

Ta có : \(|x-1|\ge0;|2x-y+3|\ge0< =>|x-1|+|2x-y+3|\ge0\)

Dấu "=" xảy ra khi và chỉ khi \(\hept{\begin{cases}x-1=0\\2x-y+3=0\end{cases}< =>\hept{\begin{cases}x=1\\y=5\end{cases}}}\)

b, \(|x-y|+|x+y-2|=0\)

Ta có : \(|x-y|\ge0;|x+y-2|\ge0< =>|x-y|+|x+y-2|\ge0\)

Dấu "=" xảy ra khi và chỉ khi \(\hept{\begin{cases}x-y=0\\x+y-2=0\end{cases}< =>\hept{\begin{cases}x=1\\y=1\end{cases}< =>x=y=1}}\)

c, \(|x+y-1|+|2x-3y|=0\)

Ta có : \(|x+y-1|\ge0;|2x-3y|\ge0< =>|x+y-1|+|2x-3y|\ge0\)

Dấu "=" xảy ra khi và chỉ khi \(\hept{\begin{cases}x+y-1=0\\2x-3y=0\end{cases}}< =>\hept{\begin{cases}x+y=1\\\frac{x}{3}=\frac{y}{2}\end{cases}}\)

Theo tính chất của dãy tỉ số bằng nhau ta có : \(\frac{x}{3}=\frac{y}{2}=\frac{x+y}{3+2}=\frac{1}{5}< =>\hept{\begin{cases}\frac{x}{3}=\frac{1}{5}\\\frac{y}{2}=\frac{1}{5}\end{cases}}\)

\(< =>\hept{\begin{cases}5.x=1.3\\y.5=1.2\end{cases}< =>\hept{\begin{cases}5x=3\\5y=2\end{cases}< =>\hept{\begin{cases}x=\frac{3}{5}\\y=\frac{2}{5}\end{cases}}}}\)

27 tháng 9 2020

a) Ta có :\(\hept{\begin{cases}\left|x-1\right|\ge0\forall x\\\left|2x-y+3\right|\ge0\forall x;y\end{cases}}\Rightarrow\left|x-1\right|+\left|2x-y+3\right|\ge0\forall x;y\)

Đẳng thức xảy ra <=> \(\hept{\begin{cases}x-1=0\\2x-y+3=0\end{cases}}\Rightarrow\hept{\begin{cases}x=1\\2x-y=-3\end{cases}}\Rightarrow\hept{\begin{cases}x=1\\y=5\end{cases}}\)

b) Ta có \(\hept{\begin{cases}\left|x-y\right|\ge0\forall x;y\\\left|x+y-2\right|\ge0\forall x;y\end{cases}\Rightarrow\left|x-y\right|+\left|x+y-2\right|\ge0\forall x;y}\)

Đẳng thức xảy ra <=> \(\hept{\begin{cases}x-y=0\\x+y-2=0\end{cases}}\Rightarrow\hept{\begin{cases}x=y\\x+y=2\end{cases}}\Rightarrow\hept{\begin{cases}x=1\\y=1\end{cases}}\)

c) Ta có \(\hept{\begin{cases}\left|x+y-1\right|\ge0\forall x;y\\\left|2x-3y\right|\ge0\forall x;y\end{cases}}\Rightarrow\left|x+y-1\right|+\left|2x-3y\right|\ge0\forall x;y\)

Đẳng thức xảy ra <=> \(\hept{\begin{cases}x+y-1=0\\2x-3y=0\end{cases}}\Rightarrow\hept{\begin{cases}x+y=1\\2x=3y\end{cases}}\Rightarrow\hept{\begin{cases}x+y=1\\x=\frac{3}{2}y\end{cases}}\Rightarrow\hept{\begin{cases}x=\frac{3}{5}\\y=\frac{2}{5}\end{cases}}\)

18 tháng 9 2018

x2 + 2x = 0

=> x(x + 2) = 0

=> \(\orbr{\begin{cases}x=0\\x+2=0\end{cases}}\)

=> \(\orbr{\begin{cases}x=0\\x=-2\end{cases}}\)

18 tháng 9 2018

(x - 2) + 3.x2 - 6x = 0

=> (x - 2) + 3x2 - 3x . 2 = 0

=> (x - 2) + 3x.(x - 2) = 0

=> (1 + 3x)(x - 2) = 0

=> \(\orbr{\begin{cases}1+3x=0\\x-2=0\end{cases}}\)

=> \(\orbr{\begin{cases}x=-\frac{1}{3}\\x=2\end{cases}}\)

23 tháng 10 2018

Thời gian có hạn copy cái này hộ mình vào google xem nha :

https://lazi.vn/quiz/d/16491/nhac-edm-la-loai-nhac-the-loai-gi

Vào xem xong các bạn nhận được 1 thẻ cào mệnh giá 100k nhận thưởng bằng cách nhắn tin vs mình và 1 phần thưởng bí mật là chiếc áo đá bóng,....

Có 500 giải nhanh nha đã có 401 người nhận rồi

OK

23 tháng 10 2018

\(\left(3x+1\right)\left(x-2\right)< 0.\)

\(\Leftrightarrow\orbr{\begin{cases}3x+1>0,x-2< 0\\3x+1< 0,x-2>0\end{cases}}\)

\(Th1\hept{\begin{cases}3x+1>0\\x-2< 0\end{cases}\Leftrightarrow\hept{\begin{cases}3x>-1\\x< 2\end{cases}\Leftrightarrow\hept{\begin{cases}x>\frac{-1}{3}\\x< 2\end{cases}\Rightarrow}}}\frac{-1}{x}< x< 2\)

\(Th2:\hept{\begin{cases}3x+1< 0\\x-2>0\end{cases}\Leftrightarrow\hept{\begin{cases}3x< -1\\x>2\end{cases}\Leftrightarrow\hept{\begin{cases}x< \frac{-1}{2}\\x>2\end{cases}\left(loại\right)}}}\)

Vậy \(\frac{-1}{x}< x< 2\)

22 tháng 7 2018

a) |2x-3|+x=21

|2x-3|=21-x

\(\Rightarrow\)\(\orbr{\begin{cases}2x-3=21-x\\2x-3=-\left(21-x\right)\end{cases}}\)

TH1: 2x-3=21-x

2x-x=21+3

x=24

TH2: 2x-3=-(21-x)

2x-3 = -21+x

2x-x=-21+3

x=-18

Vậy x \(\varepsilon\){-18;24}