Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
6.
ĐKXĐ: \(x\ge2\)
\(\sqrt{\left(x-1\right)\left(x-2\right)}+\sqrt{x+3}=\sqrt{x-2}+\sqrt{\left(x-1\right)\left(x+3\right)}\)
\(\Leftrightarrow\sqrt{\left(x-1\right)\left(x-2\right)}-\sqrt{x-2}+\sqrt{x+3}-\sqrt{\left(x-1\right)\left(x+3\right)}=0\)
\(\Leftrightarrow\sqrt{x-2}\left(\sqrt{x-1}-1\right)-\sqrt{x+3}\left(\sqrt{x-1}-1\right)=0\)
\(\Leftrightarrow\left(\sqrt{x-2}-\sqrt{x+3}\right)\left(\sqrt{x-1}-1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}\sqrt{x-2}=\sqrt{x+3}\\\sqrt{x-1}=1\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x-2=x+3\left(vn\right)\\x=2\end{matrix}\right.\)
4.
ĐKXĐ: \(x\ge4\)
Đặt \(\sqrt{x-4}=t\ge0\Rightarrow x=t^2+4\)
\(\Rightarrow3\left(t^2+4\right)+7t=14t-20\)
\(\Leftrightarrow3t^2-7t+34=0\)
Phương trình vô nghiệm
5.
ĐKXĐ: ...
- Với \(x=0\) ko phải nghiệm
- Với \(x\ne0\Rightarrow\sqrt{x+1}-1\ne0\) , nhân 2 vế của pt cho \(\sqrt{x+1}-1\) và rút gọn ta được:
\(\sqrt{x+1}+2x-5=\sqrt{x+1}-1\)
\(\Leftrightarrow2x=4\Rightarrow x=2\)
a, dk \(1-16x^2\ge0\Leftrightarrow\left(1-4x\right)\left(1+4x\right)\ge0\)
\(\Leftrightarrow-\frac{1}{4}\le x\le\frac{1}{4}\)
b tuong tu
c, \(\sqrt{\left(x-3\right)\left(5-x\right)}\ge0\Leftrightarrow\left(x-3\right)\left(5-x\right)\ge0\Leftrightarrow3\le x\le5\)
d.\(\sqrt{x^2-x+1}>0\)
ma \(x^2-x+1=x^2-2.\frac{1}{2}x+\frac{1}{4}+\frac{3}{4}=\left(x-\frac{1}{2}\right)^2+\frac{3}{4}>0\)
suy ra thoa man vs moi x
Câu 6:
ĐK: $x\geq 1$
PT $\Leftrightarrow \sqrt{(x-1)-2\sqrt{x-1}+1}-\sqrt{x-1}=1$
$\Leftrightarrow \sqrt{(\sqrt{x-1}-1)^2}=\sqrt{x-1}+1$
$\Leftrightarrow |\sqrt{x-1}-1|=\sqrt{x-1}+1$
Nếu $\sqrt{x-1}-1\geq 0$ thì PT trở thành:
$\sqrt{x-1}-1=\sqrt{x-1}+1\Leftrightarrow 2=0$ (vô lý)
Nếu $\sqrt{x-1}-1< 0$ (tương đương với $1\leq x< 2$ thì PT trở thành:
$1-\sqrt{x-1}=\sqrt{x-1}+1$
$\Leftrightarrow \sqrt{x-1}=0\Rightarrow x=1$ (thỏa mãn)
Vậy PT có nghiệm $x=1$
Câu 5:
ĐK: $x\geq 1$
PT $\Leftrightarrow \sqrt{(x-1)-4\sqrt{x-1}+4}+\sqrt{(x-1)-6\sqrt{x-1}+9}=1$
$\Leftrightarrow \sqrt{(\sqrt{x-1}-2)^2}+\sqrt{(\sqrt{x-1}-3)^2}=1$
$\Leftrightarrow |\sqrt{x-1}-2|+|\sqrt{x-1}-3|=1$
Áp dụng BĐT dạng $|a|+|b|\geq |a+b|$ ta có:
$|\sqrt{x-1}-2|+|\sqrt{x-1}-3|=|\sqrt{x-1}-2|+|3-\sqrt{x-1}|\geq |\sqrt{x-1}-2+3-\sqrt{x-1}|=1$
Dấu "=" xảy ra khi $(\sqrt{x-1}-2)(3-\sqrt{x-1})\geq 0$
$\Leftrightarrow 3\geq \sqrt{x-1}\geq 2$
$\Leftrightarrow 10\geq x\geq 5$. Kết hợp ĐKXĐ ta thấy những giá trị $x$ thỏa mãn $10\geq x\geq 5$ là nghiệm của pt.
2. \(\dfrac{\sqrt{x^2}-16}{\sqrt{x-3}}+\sqrt{x+3}=\dfrac{7}{\sqrt{x-3}}\) (2)
\(\Leftrightarrow\dfrac{\sqrt{x^2}-16}{\sqrt{x-3}}+\sqrt{x+3}-\dfrac{7}{\sqrt{x-3}}=0\)
\(\Leftrightarrow\dfrac{\sqrt{x^2}-16+\sqrt{\left(x-3\right)\left(x+3\right)}-7}{\sqrt{x-3}}=0\)
\(\Leftrightarrow\sqrt{x^2}-16+\sqrt{\left(x-3\right)\left(x+3\right)}-7=0\)
\(\Leftrightarrow\left|x\right|-16+\sqrt{x^2-9}-7=0\)
\(\Leftrightarrow\left|x\right|-23+\sqrt{x^2-9}=0\)
\(\Leftrightarrow\sqrt{x^2-9}=-\left|x\right|+23\)
\(\Leftrightarrow x^2-9=-\left(-\left|x\right|+23\right)^2\)
\(\Leftrightarrow x^2-9=-\left(-\left|x\right|\right)^2-46\cdot\left|x\right|+529\)
\(\Leftrightarrow x^2-9=\left|x\right|^2-46+\left|x\right|+529\)
\(\Leftrightarrow x^2-9=x^2-46\cdot\left|x\right|+529\)
\(\Leftrightarrow-9=-46\cdot\left|x\right|+529\)
\(\Leftrightarrow46\cdot\left|x\right|=529+9\)
\(\Leftrightarrow49\cdot\left|x\right|=538\)
\(\Leftrightarrow\left|x\right|=\dfrac{269}{23}\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{269}{23}\\x=-\dfrac{269}{23}\end{matrix}\right.\)
Sau khi dùng phép thử ta nhận thấy \(x\ne-\dfrac{269}{23}\)
Vậy tập nghiệm phương trình (1) là \(S=\left\{\dfrac{269}{23}\right\}\)
3. sửa đề: \(\sqrt{14-x}=\sqrt{x-4}\sqrt{x-1}\) (3)
\(\Leftrightarrow\sqrt{14-x}=\sqrt{\left(x-4\right)\left(x-1\right)}\)
\(\Leftrightarrow\sqrt{14-x}=\sqrt{x^2-x-4x+4}\)
\(\Leftrightarrow\sqrt{14-x}=\sqrt{x^2-5x+4}\)
\(\Leftrightarrow14-x=x^2-5x+4\)
\(\Leftrightarrow14-x-x^2+5x-4=0\)
\(\Leftrightarrow10+4x-x^2=0\)
\(\Leftrightarrow-x^2+4x+10=0\)
\(\Leftrightarrow x^2-4x-10=0\)
\(\Leftrightarrow x=\dfrac{-\left(-4\right)\pm\sqrt{\left(-4\right)^2-4\cdot1\cdot\left(-10\right)}}{2\cdot1}\)
\(\Leftrightarrow x=\dfrac{4\pm\sqrt{16+40}}{2}\)
\(\Leftrightarrow x=\dfrac{4\pm\sqrt{56}}{2}\)
\(\Leftrightarrow x=\dfrac{4\pm2\sqrt{14}}{2}\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{4-2\sqrt{14}}{2}\\x=\dfrac{4+2\sqrt{14}}{2}\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=2+\sqrt{14}\\x=2-\sqrt{14}\end{matrix}\right.\)
sau khi dùng phép thử ta nhận thấy \(x\ne2-\sqrt{14}\)
Vậy tập nghiệm phương trình (3) là \(S=\left\{2+\sqrt{14}\right\}\)
ĐKXĐ: \(x\ge0\) và \(x\ne9\)
a/ \(\frac{x\sqrt{x}-3}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-3\right)}-\frac{2\sqrt{x}-6}{\sqrt{x}+1}-\frac{\sqrt{x}+3}{\sqrt{x}-3}\)
\(=\frac{x\sqrt{x}-3-\left(2\sqrt{x}-6\right)\left(\sqrt{x}-3\right)-\left(\sqrt{x}+3\right)\left(\sqrt{x}+1\right)}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-3\right)}\)
\(=\frac{x\sqrt{x}-3-2x+12\sqrt{x}-18-x-4\sqrt{x}-3}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-3\right)}\)
\(=\frac{x\sqrt{x}+8\sqrt{x}-3x-24}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-3\right)}=\frac{\sqrt{x}\left(x+8\right)-3\left(x+8\right)}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-3\right)}\)
\(=\frac{\left(x+8\right)\left(\sqrt{x}-3\right)}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-3\right)}=\frac{x+8}{\sqrt{x}+1}\)
b/ Thay \(x=14-6\sqrt{5}\) vào P ta được:
\(P=\frac{14-6\sqrt{5}+8}{\sqrt{14-6\sqrt{5}}+1}=\frac{22-6\sqrt{5}}{3-\sqrt{5}+1}=\frac{22-6\sqrt{5}}{4-\sqrt{5}}\)