Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
a) ĐK: $x\geq 2$
PT $\Leftrightarrow \sqrt{(x-2)(x+2)}-3\sqrt{x-2}=0$
$\Leftrightarrow \sqrt{x-2}(\sqrt{x+2}-3)=0$
\(\Rightarrow \left[\begin{matrix} \sqrt{x-2}=0\\ \sqrt{x+2}-3=0\end{matrix}\right.\Rightarrow \left[\begin{matrix} x=2\\ x=7\end{matrix}\right.\) (thỏa mãn)
Vậy..........
b) ĐK: $x\geq 0$
PT $\Leftrightarrow (\sqrt{x}-3)^2=0$
$\Leftrightarrow \sqrt{x}-3=0$
$\Leftrightarrow x=9$ (thỏa mãn)
c) ĐK: $x\geq 3$
PT $\Leftrightarrow \sqrt{9(x-3)}+\sqrt{x-3}-\frac{1}{2}\sqrt{4(x-3)}=7$
$\Leftrightarrow 3\sqrt{x-3}+\sqrt{x-3}-\sqrt{x-3}=7$
$\Leftrightarrow 3\sqrt{x-3}=7$
$\Leftrightarrow x-3=(\frac{7}{3})^2$
$\Rightarrow x=\frac{76}{9}$
d)
ĐK: $x\geq \frac{-1}{2}$
PT $\Leftrightarrow 3\sqrt{4(2x+1)}-\frac{1}{3}\sqrt{9(2x+1)}-\frac{1}{2}\sqrt{25(2x+1)}+\sqrt{\frac{1}{4}(2x+1)}=6$
$\Leftrightarrow 6\sqrt{2x+1}-\sqrt{2x+1}-\frac{5}{2}\sqrt{2x+1}+\frac{1}{2}\sqrt{2x+1}=6$
$\Leftrightarrow 3\sqrt{2x+1}=6$
$\Leftrightarrow \sqrt{2x+1}=2$
$\Rightarrow x=\frac{3}{2}$ (thỏa mãn)
Nếu bạn tinh mắt một chút sẽ thấy:
Câu a: \(5\sqrt{2x-1}+2\sqrt{2x-1}-3\sqrt{x}=6\sqrt{2x-1}-2\sqrt{x}\)
Tương đương \(\sqrt{2x-1}=\sqrt{x}\Leftrightarrow\hept{\begin{cases}2x-1=x\\x\ge0\end{cases}}\Leftrightarrow x=1\).
Câu b: \(2\sqrt{x-5}-\sqrt{x-5}=\sqrt{1-x}\).
Tương đương \(\sqrt{x-5}=\sqrt{1-x}\Leftrightarrow\hept{\begin{cases}x\le1\\x-5=1-x\end{cases}}\) (vô nghiệm)
Câu c: \(\sqrt{\left(x+3\right)\left(x-3\right)}-2\sqrt{x-3}=0\)
Tương đương \(\orbr{\begin{cases}x-3=0\\\sqrt{x+3}-2=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=3\\x=1\end{cases}}\)
Ấy chết! Sai ngu ở pt c rồi. Không có nghiệm \(x=1\) nha bạn.
a.\(\sqrt{x-2}=\sqrt{4-x}\)
đk: \(\left\{{}\begin{matrix}x-2\ge0\\4-x\ge0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x\ge2\\x\le4\end{matrix}\right.\Leftrightarrow2\le x\le4\)
pt đã cho tương đương với
\(x-2=4-x\)
\(\Leftrightarrow2x=6\Rightarrow x=3\left(TM\right)\)
b.\(\sqrt{x^2-8x+6}=x+2\)
đk: \(x+2\ge0\Rightarrow x\ge-2\)
pt đã cho tương đương với
\(x^2-8x+6=\left(x+2\right)^2\)
\(\Leftrightarrow x^2-8x+6=x^2+4x+4\)
\(\Leftrightarrow-12x=-2\Rightarrow x=\frac{1}{6}\left(TM\right)\)
c.\(\sqrt{2x-1}+5=\sqrt{8x-4}\)
\(\Leftrightarrow\sqrt{2x-1}+5=\sqrt{4\left(2x-1\right)}\)
\(\Leftrightarrow\sqrt{2x-1}+5=2\sqrt{2x-1}\)
\(\Leftrightarrow\sqrt{2x-1}=5\)
đk: \(2x-1\ge0\Leftrightarrow x\ge\frac{1}{2}\)
pt tương đương: \(2x-1=25\)
\(\Leftrightarrow2x=26\Rightarrow x=13\left(TM\right)\)
d.\(\sqrt{16-32x}-\sqrt{12x}=\sqrt{3x}+\sqrt{9-18x}\)
\(\Leftrightarrow\sqrt{16\left(1-2x\right)}-\sqrt{4.3x}=\sqrt{3x}+\sqrt{9\left(1-2x\right)}\)
\(\Leftrightarrow4\sqrt{1-2x}-2\sqrt{3x}+3\sqrt{1-2x}\)
\(\Leftrightarrow\sqrt{1-2x}=3\sqrt{3x}\)
đk: \(\left\{{}\begin{matrix}1-2x\ge0\\3x\ge0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x\le\frac{1}{2}\\x\ge0\end{matrix}\right.\Leftrightarrow0\le x\le\frac{1}{2}\)
pt tương đương: \(1-2x=9.3x\)
\(\Leftrightarrow29x=1\Rightarrow x=\frac{1}{29}\left(TM\right)\)
e. \(\sqrt{x^2-9}-\sqrt{4x-12}=0\)
đk: \(\left\{{}\begin{matrix}\left(x-3\right)\left(x+3\right)\ge0\\4x-12\ge0\end{matrix}\right.\Leftrightarrow x\ge3\)
pt đã cho tương đương với
\(\sqrt{\left(x-3\right)\left(x+3\right)}-\sqrt{4\left(x-3\right)}=0\)
\(\Leftrightarrow\sqrt{x-3}.\sqrt{x+3}-2\sqrt{x-3}=0\)
\(\Leftrightarrow\sqrt{x-3}.\left(\sqrt{x+3}-2\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}\sqrt{x-3}=0\\\sqrt{x+3}-2=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x-3=0\Rightarrow x=3\left(TM\right)\\\sqrt{x+3}=2\Leftrightarrow x+3=4\Rightarrow x=1\left(KTM\right)\end{matrix}\right.\)
a) ĐKXĐ : \(x\ge0\)
Ta có : \(\sqrt{3x}-\sqrt{27}+\sqrt{75x}=3\Leftrightarrow\sqrt{x}\left(\sqrt{3}+\sqrt{75}\right)=3+\sqrt{27}\)
\(\Leftrightarrow\sqrt{x}=\frac{3+\sqrt{27}}{\sqrt{3}+\sqrt{75}}=\frac{\sqrt{3}+3}{6}\)
\(\Leftrightarrow x=\frac{\left(3+\sqrt{3}\right)^2}{36}\)
b) ĐKXĐ : \(x\ge1\)
\(\sqrt{x-1}-\sqrt{4x-4}+\sqrt{9x-9}=10\)
\(\Leftrightarrow\sqrt{x-1}-\sqrt{4.\left(x-1\right)}+\sqrt{9.\left(x-1\right)}=10\)
\(\Leftrightarrow\sqrt{x-1}-2\sqrt{x-1}+3\sqrt{x-1}=10\)
\(\Leftrightarrow\sqrt{x-1}=5\Leftrightarrow x=26\) (TMĐK)
c) ĐKXĐ: \(x\ge-\frac{1}{2}\)
\(\sqrt{2x+1}+\sqrt{18x+9}-\sqrt{50x+25}=-3\)
\(\Leftrightarrow\sqrt{2x+1}+\sqrt{9\left(2x+1\right)}-\sqrt{25\left(2x+1\right)}=-3\)
\(\Leftrightarrow\sqrt{2x+1}+3\sqrt{2x+1}-5\sqrt{2x+1}=-3\)
\(\Leftrightarrow0=-3\) (Vô lí - loại)
Vậy pt vô nghiệm.
\(\sqrt{x-1}=5\)
\(\Leftrightarrow x-1=25\) (bình phương 2 vế)
\(\Leftrightarrow x=26\)
b,\(\sqrt{16\left(x+1\right)}-\sqrt{9\left(x+1\right)}+\sqrt{4\left(x+1\right)}-16\sqrt{x+1}=0\) (dk \(x\ge-1\)
\(\Leftrightarrow\sqrt{x+1}\left(4-3+2-16\right)=0\)
\(\Leftrightarrow\sqrt{x+1}.-13=0\)
\(\Leftrightarrow x=-1\)
Lời giải:
a) ĐK: \(x>0; x\neq 25; x\neq 36\)
PT \(\Rightarrow (\sqrt{x}-2)(\sqrt{x}-6)=(\sqrt{x}-5)(\sqrt{x}-4)\)
\(\Leftrightarrow x-8\sqrt{x}+12=x-9\sqrt{x}+20\)
\(\Leftrightarrow \sqrt{x}=8\Rightarrow x=64\) (thỏa mãn)
Vậy.......
b)
ĐK: \(x\geq \frac{-1}{2}\)
PT \(\Leftrightarrow \sqrt{9(2x+1)}-\sqrt{4(2x+1)}+\frac{1}{3}\sqrt{2x+1}=4\)
\(\Leftrightarrow 3\sqrt{2x+1}-2\sqrt{2x+1}+\frac{1}{3}\sqrt{2x+1}=4\)
\(\Leftrightarrow \frac{4}{3}\sqrt{2x+1}=4\Leftrightarrow \sqrt{2x+1}=3\)
\(\Rightarrow x=\frac{3^2-1}{2}=4\) (thỏa mãn)
c)
ĐK: \(x\geq 2\)
PT \(\Leftrightarrow \sqrt{4(x-2)}-\frac{1}{2}\sqrt{x-2}+\sqrt{9(x-2)}=9\)
\(\Leftrightarrow 2\sqrt{x-2}-\frac{1}{2}\sqrt{x-2}+3\sqrt{x-2}=9\)
\(\Leftrightarrow \frac{9}{2}\sqrt{x-2}=9\Leftrightarrow \sqrt{x-2}=2\Rightarrow x=2^2+2=6\) (thỏa mãn)
a, \(\left(\sqrt{3}-1\right).\sqrt{4+2\sqrt{3}}\)
\(=\left(\sqrt{3}-1\right).\sqrt{\left(\sqrt{3}+1\right)^2}\)
\(=\left(\sqrt{3}-1\right).\left|\sqrt{3}+1\right|\)
\(=\left(\sqrt{3}-1\right).\left(\sqrt{3}+1\right)\)
\(=\left(\sqrt{3}\right)^2-1=3-1=2\).
b, Với x không âm ⇔ \(x\ge0\) ta có:
\(5\sqrt{2x}-3\sqrt{8x}+\sqrt{50x}-7\)
\(=5\sqrt{2x}-3\sqrt{2^2.2x}+\sqrt{5^2.2x}-7\)
\(=5\sqrt{2x}-6\sqrt{2x}+5\sqrt{2x}-7\)
\(=\left(5-6+5\right).\sqrt{2x}-7\)
\(=4\sqrt{2x}-7\)
Vậy với \(x\ge0\) thì biểu thức có giá trị \(=4\sqrt{2x}-7\).
\(\Leftrightarrow30\sqrt{2}.\sqrt{x}=9\)
\(\Leftrightarrow\sqrt{x}=\dfrac{3\sqrt{2}}{20}\)
\(\Leftrightarrow x=\dfrac{9}{200}\)
Vậy pt có tập nghiệm là S=\(\left\{\dfrac{9}{200}\right\}\)