Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)\(2x\left(x+1\right)-3-2x=5\)
\(\Leftrightarrow2x^2+2x-3-2x=5\)
\(\Leftrightarrow2x^2=8\)
\(\Leftrightarrow x^2=4=\left(-2\right)^2=2^2\)
\(\Rightarrow x=2;-2\)
b)\(2x\left(3x+1\right)+\left(4-2x\right)=7\)
\(\Leftrightarrow6x^2+2x+4-2x=7\)
\(\Leftrightarrow6x^2+4=7\)
\(\Leftrightarrow6x^2=3\)
\(\Leftrightarrow x^2=\frac{1}{2}=-\sqrt{\frac{1}{2}}=\sqrt{\frac{1}{2}}\)
c)\(\left(x-3\right)^3-\left(x-3\right)\left(x^2+3x+9\right)+6\left(x-1\right)^2=6\)
\(\Leftrightarrow x^3-9x^2+27x-27-x^3+27+6\left(x^2-2x+1\right)=6\)
\(\Leftrightarrow-3x^2+27x+6x^2-12x+6=6\)
\(\Leftrightarrow-3x^2+27x+6x^2-12x+6=6\)
\(\Leftrightarrow3x^2+15x=0\)
\(\Leftrightarrow3x\left(x+5\right)=0\)
\(\Rightarrow\orbr{\begin{cases}3x=0\\x+5=0\end{cases}\Rightarrow}\orbr{\begin{cases}x=0\\x=-5\end{cases}}\)
(x-2)2-(x-3)(x-3)=6
x2-2.x.2+22-x2-32=6
(x2-x2)-4x+(22+32)=6
-4x+13=6
-4x=6-13=-7
x=-7:(-4)=1,75
`(x+2)(x^2 -2x+4) -x(x^2-2)=15`
`<=> x^3 +8 - x^3 + 2x-15=0`
`<=> 2x-7=0`
`<=> 2x=7`
`<=>x=7/2`
__
`(x-4)^2 -(x-2)(x+2)=6`
`<=>x^2 - 8x+16- x^2 +4-6=0`
`<=> -8x+14=0`
`<=> -8x=-14`
`<=>x=14/8= 7/4`
__
`x^4 -2x^3 +x^2-2x=0`
`<=>x(x^3-2x^2+x-2)=0`
`<=> x(x^3+x-2x^2-2)=0`
`<=>x(x(x^2+1) -2(x^2+1))=0`
`<=> x(x^2+1)(x-2)=0`
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x^2+1=0\\x-2=0\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}x=0\\x=2\end{matrix}\right.\)
a) \(\left(x+2\right)\left(x^2-2x+4\right)-x\left(x^2-2\right)=15\)
\(\Leftrightarrow\left(x^3+2^3\right)-\left(x^3-2x\right)=15\)
\(\Leftrightarrow x^3+8-x^3+2x=15\)
\(\Leftrightarrow2x+8=15\)
\(\Leftrightarrow2x=15-8\)
\(\Leftrightarrow2x=7\)
\(\Leftrightarrow x=\dfrac{7}{2}\)
b) \(\left(x-4\right)^2-\left(x+2\right)\left(x-2\right)=6\)
\(\Leftrightarrow x^2-8x+16-\left(x^2-4\right)=6\)
\(\Leftrightarrow x^2-8x+16-x^2+4=6\)
\(\Leftrightarrow-8x+20=6\)
\(\Leftrightarrow-8x=6-20\)
\(\Leftrightarrow-8x=-14\)
\(\Leftrightarrow x=\dfrac{7}{4}\)
c) \(x^4-2x^3+x^2-2x=0\)
\(\Leftrightarrow x^3\left(x-2\right)+x\left(x-2\right)=0\)
\(\Leftrightarrow\left(x^3+x\right)\left(x-2\right)=0\)
\(\Leftrightarrow x\left(x^2+1\right)\left(x-2\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=2\end{matrix}\right.\)
a)\(\left(x-2\right)^2-\left(x-3\right)\left(x+3\right)=6.\)
\(\Leftrightarrow x^2-4x+4-x^2+9-6=0\)
\(\Leftrightarrow-4x+7=0\)
\(\Leftrightarrow4x=7\Leftrightarrow x=1,75\)
\(b,4\left(x-3\right)^2-\left(2x-1\right)\left(2x+1\right)=10.\)
\(\Leftrightarrow4\left(x^2-6x+9\right)-4x^2+1-10=0\)
\(\Leftrightarrow-24x+27=0\)
\(\Leftrightarrow24x=27\Leftrightarrow x=1,125\)
1. <=> (x-2).(2x+3) = 0
<=> x-2=0 hoặc 2x+3 = 0
<=> x=2 hoặc x=-3/2
2. <=> x^2-4x+4-x^2+9 = 0
<=> 13-4x=0
<=> 4x=13
<=> x = 13/4
3.<=>4x^2-24x+36 - 4x^2+1 = 10
<=> 37-24x = 10
<=> 24x = 37 - 10 = 27
<=> x = 27 : 24 = 9/8
k mk nha
a) x^3 - 64 - x^3 +6x = 2
(x^3 - x^3) + 6x = 2+64 quy tắc chuyển vế nhé bạn
6x = 66
x = 66:11
x = 6
a) \(\left(x^2+x\right)^2+\left(x^2+x\right)-6=0\)
\(\Leftrightarrow\left(x^2+x\right)^2+x^2+x-6=0\)
\(\Leftrightarrow\left[x\left(x+1\right)\right]^2+x\left(x+1\right)-6=0\)
\(\Leftrightarrow x^2\left(x+1\right)^2+x\left(x+1\right)-6=0\)
\(\Leftrightarrow x^4+2x^3+2x^2+x-6=0\)
\(\Leftrightarrow\left(x^3+3x^2+5x+6\right)\left(x-1\right)=0\)
\(\Leftrightarrow\left(x^2+x+3\right)\left(x+2\right)\left(x-1\right)=0\)
mà \(x^2+x+3\ne0\) nên:
\(\Leftrightarrow\orbr{\begin{cases}x+2=0\\x-1=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=-2\\x=1\end{cases}}\)
vậy:....
a) \(\left(x^2+x\right)^2+\left(x^2+x\right)-6=0\)
\(\Leftrightarrow\left(x^2+x\right)^2+x^2+x-6=0\)
\(\Leftrightarrow\left[x\left(x+1\right)\right]^2+x\left(x+1\right)-6=0\)
\(\Leftrightarrow x^2\left(x+1\right)^2+x\left(x+1\right)-6=0\)
\(\Leftrightarrow x^4+2x^3+2x^2+x-6=0\)
\(\Leftrightarrow\left(x^3+3x^2+5x+6\right)\left(x-1\right)=0\)
\(\Leftrightarrow\left(x^2+x+3\right)\left(x+2\right)\left(x-1\right)=0\)
mà \(x^2+x+3\ne0\) nên:
\(\Leftrightarrow\orbr{\begin{cases}x+2=0\\x-1=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=-2\\x=1\end{cases}}\)
vậy:....