Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
b) Ta có : \(x=2019\) \(\Rightarrow x+1=2020\) Thay vào biểu thức ta được :
( Chỗ nào có 2020 thay thành x + 1 )
\(x^9-\left(x+1\right).x^8+\left(x+1\right).x^7-....-\left(x+1\right).x^2+\left(x+1\right).x\)
\(=x^9-x^9-x^8+x^8+x^7-...-x^3-x^2+x^2+x\)
\(=x\\ \)
\(=2019\)
Vậy : biểu thức trên bằng 2019 với x = 2019.
2019x^2 - 2020x + 1 = 0
=> 2019x^2 - 2019x - x + 1 = 0
=> 2019x(x - 1) - (x - 1) = 0
=> (2019x - 1)(x - 1) = 0
=> 2019x - 1 =0 hoặc x - 1 = 0
=> 2019x = 1 hoặc x = 1
=> x = 1/2019 hoặc x = 1
1.b) \(\left(\left|x\right|-3\right)\left(x^2+4\right)< 0\)
\(\Rightarrow\hept{\begin{cases}\left|x\right|-3\\x^2+4\end{cases}}\) trái dấu
\(TH1:\hept{\begin{cases}\left|x\right|-3< 0\\x^2+4>0\end{cases}}\Leftrightarrow\hept{\begin{cases}\left|x\right|< 3\\x^2>-4\end{cases}}\Leftrightarrow x\in\left\{0;\pm1;\pm2\right\}\)
\(TH1:\hept{\begin{cases}\left|x\right|-3>0\\x^2+4< 0\end{cases}}\Leftrightarrow\hept{\begin{cases}\left|x\right|>3\\x^2< -4\end{cases}}\Leftrightarrow x\in\left\{\varnothing\right\}\)
Vậy \(x\in\left\{0;\pm1;\pm2\right\}\)
\(\frac{x+2}{11}+\frac{x+2}{12}+\frac{x+2}{13}-\frac{x+2}{14}-\frac{x+2}{15}=0\\ \Leftrightarrow\left(x+2\right)\left(\frac{1}{11}+\frac{1}{12}+\frac{1}{13}-\frac{1}{14}-\frac{1}{15}\right)=0\\ \Rightarrow x+2=0\Leftrightarrow x=-2\)
x+(-31/12)^2=(49/12)^2-x
x+x=(49/12)^2-(-31/12)^2
tính x
từ x tìm ra y
b)x(x-y):[y(x-y)]=3/10:(-3/50)=...
=>x/y=... =>x=...;y=...
a, \(\frac{x}{3}=\frac{y}{4}\Rightarrow\frac{5x}{15}=\frac{2y}{8}=\frac{5x-2y}{15-8}=\frac{28}{7}=4\)
=> x = 4.3 = 12
y = 4.4 = 16
b, \(x:2=y:\left(-5\right)\Rightarrow\frac{x}{2}=\frac{y}{-5}=\frac{x-y}{2-\left(-5\right)}=\frac{-7}{7}=-1\)
=> x = (-1).2 = -2
y = (-1)(-5) = 5
c, \(\frac{x}{2}=\frac{y}{3}\Rightarrow\frac{x}{8}=\frac{y}{12}\)
\(\frac{y}{4}=\frac{z}{5}\Rightarrow\frac{y}{12}=\frac{z}{15}\)
\(\Rightarrow\frac{x}{8}=\frac{y}{12}=\frac{z}{15}=\frac{x+y-z}{8+12-10}=\frac{10}{10}=1\)
=> x = 8
y =12
z = 15
1) \(\left|x\right|< 4\Leftrightarrow-4< x< 4\)
2) \(\left|x+21\right|>7\Leftrightarrow\orbr{\begin{cases}x+21>7\\x+21< -7\end{cases}}\Leftrightarrow\orbr{\begin{cases}x>-14\\x< -28\end{cases}}\)
3) \(\left|x-1\right|< 3\Leftrightarrow-3< x-1< 3\Leftrightarrow-2< x< 4\)
4) \(\left|x+1\right|>2\Leftrightarrow\orbr{\begin{cases}x+1>2\\x+1< -2\end{cases}}\Leftrightarrow\orbr{\begin{cases}x>1\\x< -3\end{cases}}\)
\(\left|x+\frac{1}{2}\right|+\left|3-y\right|=0\)
Vì \(\hept{\begin{cases}\left|x+\frac{1}{2}\right|\ge0\\\left|3-y\right|\ge0\end{cases}}\Rightarrow\)\(\left|x+\frac{1}{2}\right|+\left|3-y\right|\ge0\)
Dấu "="\(\Leftrightarrow\hept{\begin{cases}\left|x+\frac{1}{2}\right|=0\\\left|3-y\right|=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=\frac{-1}{2}\\y=3\end{cases}}\)
\(\left|2020x^2+4040x\right|=\left|x+2\right|\)
\(\Leftrightarrow\left|2020x\left(x+2\right)\right|=\left|x+2\right|\)
\(\Leftrightarrow\left|x+2\right|\left|2020x\right|=\left|x+2\right|\)
\(\Leftrightarrow\left|x+2\right|\left|2020x\right|-\left|x+2\right|=0\)
\(\Leftrightarrow\left|x+2\right|\left(\left|2020x\right|-1\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}\left|x+2\right|=0\\\left|2020x\right|-1=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=-2\\x\in\left\{\frac{1}{2020};\frac{-1}{2020}\right\}\end{cases}}\)