![](https://rs.olm.vn/images/avt/0.png?1311)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
Ta có: \(|2019-x|+|2021-x|=|2019-x|+|x-2021|\)
\(\ge|2019-x+x-2021|=|-2|=2\)
Dấu " = " xảy ra khi \(\left(2019-x\right)\cdot\left(x-2021\right)\ge0\) => 2019 - x và x - 2021 cùng dấu
\(TH1:\hept{\begin{cases}2019-x< 0\\x-2021< 0\end{cases}\Rightarrow\hept{\begin{cases}x>2019\\x< 2021\end{cases}}\Rightarrow2019< x< 2021}\)
\(TH2:\hept{\begin{cases}2019-x\ge0\\x-2021\ge0\end{cases}\Rightarrow\hept{\begin{cases}x\le2019\\x\ge2021\end{cases}}}\) ( loại )
Mà \(|2019-x|+|2020-x|+|2021-x|=2\)
\(\Rightarrow|2020-x|=0\Rightarrow2020-x=0\Rightarrow x=2020-0=2020\)
Vì 2020 thỏa mãn lớn hơn 2019 và bé hơn 2021 => x = 2020
![](https://rs.olm.vn/images/avt/0.png?1311)
\(\Leftrightarrow\dfrac{x-2}{2020}-1+\dfrac{x-3}{2019}-1=\dfrac{x-2019}{3}-1+\dfrac{x-2020}{2}-1\)
=>x-2022=0
hay x=2022
![](https://rs.olm.vn/images/avt/0.png?1311)
Lời giải:
$\frac{x+2}{2020}+\frac{x+2}{2020}=\frac{x+2019}{3}+\frac{x+2020}{2}$
$\frac{x+2}{2020}+1+\frac{x+2}{2020}+2=\frac{x+2019}{3}+1+\frac{x+2020}{2}+1$
$\frac{x+2022}{2020}+\frac{x+2022}{2020}=\frac{x+2022}{3}+\frac{x+2022}{2}$
$(x+2022)(\frac{1}{2020}+\frac{1}{2020}-\frac{1}{3}-\frac{1}{2})=0$
Dễ thấy $\frac{1}{2020}+\frac{1}{2020}-\frac{1}{3}-\frac{1}{2}<0$
Do đó: $x+2022=0$
$\Rightarrow x=-2022$
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
\(\frac{x+1}{2020}+\frac{x+2}{2019}+\frac{x+3}{2018}+\frac{x+4}{2017}=-4\)
=> \(\left[\frac{x+1}{2020}+1\right]+\left[\frac{x+2}{2019}+1\right]+\left[\frac{x+3}{2018}+1\right]+\left[\frac{x+4}{2017}+1\right]=-4\)
=> \(\left[\frac{x+1}{2020}+\frac{2020}{2020}\right]+\left[\frac{x+2}{2019}+\frac{2019}{2019}\right]+\left[\frac{x+3}{2018}+\frac{2018}{2018}\right]+\left[\frac{x+4}{2017}+\frac{2017}{2017}\right]=-4\)
=> \(\frac{x+2021}{2020}+\frac{x+2021}{2019}+\frac{x+2021}{2018}+\frac{x+2021}{2017}=-4\)
=> \(\left[x+2021\right]\left[\frac{1}{2000}+\frac{1}{2019}+\frac{1}{2018}+\frac{1}{2017}\right]=-4\)
Do \(\frac{1}{2020}>\frac{1}{2019}>\frac{1}{2018}>\frac{1}{2017}\)nên \(\frac{1}{2000}+\frac{1}{2019}+\frac{1}{2018}+\frac{1}{2017}\ne0\)
Do đó : x + 2021 = -4 => x = -4 - 2021 = -2025
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
\(\left(x+20\right)^{2020}+\left|y+4\right|^{2019}=0\)
Ta thấy : \(\hept{\begin{cases}\left(x+20\right)^{2020}\ge0\forall x\\\left|y+4\right|^{2019}\ge0\forall y\end{cases}}\)
\(\Rightarrow\left(x+20\right)^{2020}+\left|y+4\right|^{2019}\ge0\forall x,y\)
Do đó, dấu "=" xảy ra \(\Leftrightarrow\hept{\begin{cases}\left(x+20\right)^{2020}=0\\\left|y+4\right|^{2019}=0\end{cases}}\) \(\Leftrightarrow\hept{\begin{cases}x=-20\\y=-4\end{cases}}\)
Vậy : \(\left(x,y\right)=\left(-20,-4\right)\)
( x + 20 )2020 + | y + 4 |2019 = 0
Vì ( x + 20 )2020 \(\ge\)0
| y + 4 |2019 \(\ge\) 0
=> ( x + 20 )2020 + | y + 4 |2019 \(\ge\)0
Dấu " = " xảy ra khi
\(\hept{\begin{cases}x+20=0\\y+4=0\end{cases}\Leftrightarrow\hept{\begin{cases}x=-20\\y=-4\end{cases}}}\)
Vậy ................................
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
a) Ta có:\(8\left(x-2019\right)^2⋮8\Rightarrow25-y^2⋮8\)\(\left(1\right)\)
Mặt khác: \(8\left(x-2019\right)^2\ge0\Rightarrow25-y^2\ge0\)\(\left(2\right)\)
Từ\(\left(1\right),\left(2\right)\)ta có: \(y^2=1;9;25\)
Xét:\(y^2=1\Rightarrow8\left(x-2019\right)^2=24\Rightarrow\left(x-2019\right)^2=3\left(ktm\right)\)
\(y^2=9\Rightarrow8\left(x-2019\right)^2=16\Rightarrow\left(x-2019\right)^2=2\left(ktm\right)\)
\(y^2=25\Rightarrow8\left(x-2019\right)^2=0\Rightarrow\left(x-2019\right)^2=0\Rightarrow x-2019=0\Rightarrow x=2019\left(tm\right)\)
Vậy \(y=5;x=2019\)
\(y=-5;x=2019\)
![](https://rs.olm.vn/images/avt/0.png?1311)
AIi trả lời được mình sẽ cho 3 tục từ các mục của mình
kkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkk