Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)\(2019-\left|x-2019\right|=x\)
\(\Rightarrow2019-x=\left|x-2019\right|\)
=>\(\left|x-2019\right|=-\left(x-2019\right)\)
=>\(x-2019\le0\)
=>\(x\le2019\)
b) Vì \(\left(2x-1\right)^{2018}\ge0\forall x\)
\(\left(y-\frac{2}{5}\right)^{2018}\ge0\forall y\)
\(\left|x+y-z\right|\ge0\forall x,y,z\)
=> \(\left(2x-1\right)^{2018}+\left(y-\frac{2}{5}\right)^{2018}\)\(+\left|x+y-z\right|\ge0\forall x,y,z\)
mà \(\left(2x-1\right)^{2018}+\left(y-\frac{2}{5}\right)^{2018}\)\(+\left|x+y-z\right|=0\)
\(\Leftrightarrow\hept{\begin{cases}2x-1=0\\y-\frac{2}{5}=0\\x+y-z=0\end{cases}}\)=>\(\Leftrightarrow\hept{\begin{cases}x=\frac{1}{2}\\y=\frac{2}{5}\\z=\frac{9}{10}\end{cases}}\)
a, Ta có:
\(\left|x-2019\right|=\orbr{\begin{cases}x-2019\ge0\Rightarrow x\ge2019\\-x+2019< 0\Rightarrow x< 2019\end{cases}}\)
Xét x<2019 thì |x-2019|=-x+2019
Khi đó: 2019-(-x+2019)=x
\(\Leftrightarrow\)-x+2019=2019-x
\(\Leftrightarrow\)-x+2019+x=2019
\(\Leftrightarrow\)0x+2019=2019
\(\Leftrightarrow\)0x=0 (thỏa mãn)
Xét 2019\(\le\)x thì |x-2019|=x-2019
Khi đó 2019-(x-2019)=x
\(\Leftrightarrow\)2019-x+2019=x
\(\Leftrightarrow\)4038-x=x
\(\Leftrightarrow\)4038=2x
\(\Leftrightarrow\)x=2019(thỏa mãn)
Vậy .......................................................!!!
/2017-x/+/2019-x/>=2
khi 2017<=x<=2018
/2018-x/>=0 mọi x
=>x=2018 là duy nhất
|2017-x|+|2018-x|+|2019-x|=2
nên sẽ có ít nhất 1 giá trị bằng 0
1. |2017-x|=0
2017-x=0
x=2017
=>|2017-x|+|2018-x|+|2019-x|=3(không thỏa mãn)
2.|2018-x|=0
2018-x=0
x=2018
=>|2017-x|+|2018-x|+|2019-x|=2(thỏa mãn)
3.|2019-x|=0
2019-x=0
x=2019 =>|2017-x|+|2018-x|+|2019-x|=3(không thỏa mãn) Vậy x=2018 để thỏa mãn điều kiện|2017-x|+|2018-x|+|2019-x|=2Ta có:
\(VT=\left|x-2017\right|+\left|2019-x\right|+\left|2018-x\right|\)
\(\Rightarrow VT\ge\left|x-2017+2019-x\right|+\left|2018-x\right|\)
\(\Rightarrow VT\ge2+\left|2018-x\right|\ge2\)
Dấu "=" xảy ra khi và chỉ khi \(x=2018\Rightarrow\) pt có nghiệm duy nhất \(x=2018\)
\(\left(x+6\right)^{x+2}.\left[1-\left(x+6\right)^{10}\right]=0\)
\(\Rightarrow\orbr{\begin{cases}\left(x+6\right)^{x+2}=0\\1-\left(x+6\right)^{10}=0\end{cases}}\Rightarrow\orbr{\begin{cases}x+6=0\\x+6=1\end{cases}hoac}x+6=-1\)
\(\Rightarrow\orbr{\begin{cases}x=-6\\x=-5\end{cases}hoac}x=-7\)
vậy x=-5, x=-6 hay x=-7
2, ta có:
\(\left|4x+2\right|\ge0\)
\(\left(y+2\right)^{2018}\ge0\)
\(\Rightarrow\left|4x+2\right|+\left(y+2\right)^{2018}+2019\ge2019\)
dấu "=" xảy ra khi \(\hept{\begin{cases}\left|4x+2\right|=0\\\left(y+2\right)^{2018}=0\end{cases}}\Rightarrow\hept{\begin{cases}x=-\frac{1}{2}\\y=-2\end{cases}}\)
vậy GTNN của p = 2019 khi và chỉ khi \(x=-\frac{1}{2},y=-2\)
\(\left(x-1\right)^4=\left(1-x\right)^6\Leftrightarrow\left(x-1\right)^4=\left(x-1\right)^6\)
\(\Leftrightarrow\left(x-1\right)^4\left[\left(x-1\right)^2-1\right]=0\)
\(\Rightarrow\left[{}\begin{matrix}\left(x-1\right)^4=0\\\left(x-1\right)^2-1=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=0\\x=1\\x=2\end{matrix}\right.\)
a, (x-1)4=(1-x)6
⇒ (x-1)4=(x-1)6
⇒ (x-1)4 - (x-1)6 =0
⇒ (x-1)4 (1-(x-1)6)=0
⇒ \(\left[{}\begin{matrix}\left(x-1\right)^4=0\\1-\left(x-1\right)^6=0\end{matrix}\right.\)
⇒ \(\left[{}\begin{matrix}x-1=0\\\left(x-1\right)^6=1\end{matrix}\right.\)
⇒ \(\left[{}\begin{matrix}x=1\\x-6=1\\x-6=-1\end{matrix}\right.\)
⇒ \(\left[{}\begin{matrix}x=1\\x=7\\x=5\end{matrix}\right.\)
Vậy x ∈ \(\left\{1;7;5\right\}\)
\(|2017-x|+|2018-x|+|2019-x|=2\left(1\right)\)
Ta có: \(2017-x=0\Leftrightarrow x=2017\)
\(2018-x=0\Leftrightarrow x=2018\)
\(2019-x=0\Leftrightarrow x=2019\)
Lập bảng xét dấu :
2017-x 2018-x 2019-x 2017 2018 2019 0 0 0 - - - - - - + + + + + +
+) Với \(x\le2017\Rightarrow\hept{\begin{cases}2017-x\ge0\\2018-x>0\\2019-x>0\end{cases}\Rightarrow\hept{\begin{cases}|2017-x|=2017-x\\|2018-x|=2018-x\\|2019-x|=2019-x\end{cases}\left(2\right)}}\)
Thay (2) vào(1) ta được :
\(2017-x+2018-x+2019-x=2\)
\(6054-3x=2\)
\(3x=6052\)
\(x=\frac{6052}{3}>2017\)( loại )
+) Với \(2017< x\le2018\Rightarrow\hept{\begin{cases}2017-x< 0\\2018-x>0\\2019-x>0\end{cases}\Rightarrow\hept{\begin{cases}|2017-x|=x-2017\\|2018-x|=2018-x\\|2019-x|=2019-x\end{cases}\left(3\right)}}\)
Thay (3) vào (1) ta được :
\(x-2017+2018-x+2019-x=2\)
\(2020-x=2\)
\(x=2018\)( chọn )
+) Với \(2018< x\le2019\Rightarrow\hept{\begin{cases}2017-x< 0\\2018-x< 0\\2019-x\ge0\end{cases}\Rightarrow\hept{\begin{cases}|2017-x|=x-2017\\|2018-x|=x-2018\\|2019-x|=2019-x\end{cases}\left(4\right)}}\)
Thay (4) vào (1) ta được :
\(x-2017+x-2018+2019-x=2\)
\(x-2016=2\)
\(x=2018\)( loại )
+) Với \(x>2019\Rightarrow\hept{\begin{cases}2017-x< 0\\2018-x< 0\\2019-x< 0\end{cases}\Rightarrow\hept{\begin{cases}|2017-x|=x-2017\\|2018-x|=x-2018\\|2019-x|=x-2019\end{cases}\left(5\right)}}\)
Thay (5) vào (1) ta được :
\(x-2017+x-2018+x-2019=2\)
\(3x-6054=2\)
\(3x=6056\)
\(x=\frac{6056}{3}< 2019\)( loại )
Vậy x=2018
1) Vì \(\left|x-2018\right|\) \(\ge\) \(\forall\) x \(\in\) Z
=> \(\left|x-2018\right|+2019\) \(\ge\) 2019
Vậy để biểu thức đạt GTNN \(\Leftrightarrow\)\(\left|x-2018\right|\) = 0
=> x - 2018 = 0
=> x = 0 + 2018
=> x = 2018
Thay x vào biểu thức, ta có:
\(\left|2018-2018\right|\) + 2019
= 0 + 2019
= 2019
R=|2x-4|+|2x+5|+1
=|4-2x|+|2x+5|+1
=>R>=|4-2x+2x+5|+1=10
Dấu = xảy ra khi (2x-4)(2x+5)<=0
=>-5/2<=x<=2
c: Q=|x+1/3|+|2/3-x|>=|x+1/3+2/3-x|=1
Dấu = xảy ra khi (x+1/3)(x-2/3)<=0
=>-1/3<=x<=2/3