Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{2^{4-x}}{16^5}=32^6\)
\(\Rightarrow\frac{2^{4-x}}{\left(2^4\right)^5}=\left(2^5\right)^6\)
\(\Rightarrow\frac{2^{4-x}}{2^{20}}=2^{30}\)
\(\Rightarrow2^{4-x}=2^{30}.2^{20}\)
\(\Rightarrow2^{4-x}=2^{50}\)
\(\Rightarrow4-x=50\)
\(\Rightarrow x=-46\)
\(\frac{x}{2}=\frac{y}{4}=k\)
=> \(x=2k;\)\(y=4k\)
Theo bài ra ta có:
\(x^4.y^4=16\)
<=> \(\left(2k\right)^4.\left(4k\right)^4=16\)
<=> \(4096.k^8=16\)
<=> \(k^8=\frac{1}{256}\)
<=> \(k=\pm\frac{1}{2}\)
làm nốt phần còn lại
x/2=y/4
=> 2y=4x
<=> y=2x
thay vào , ta có
x4 .(2x)4 =16
<=> 16x8=16
<=> x8 =1
=> x= 1 hoặc x=-1
thay vào ta có 2 cặp (x,y) là ( 1,2) và (-1,-2)
\(\Rightarrow\frac{x^8}{256}=\frac{y^8}{65536}=\frac{x^4.y^4}{4096}=\frac{16}{4096}=\frac{1}{256}\)
\(\Rightarrow\left[\begin{array}{nghiempt}x=1\\x=-1\end{array}\right.\)
\(\Rightarrow\left[\begin{array}{nghiempt}y=2\\y=-2\end{array}\right.\)
Mà 2 và 4 cùng dấu
=> x; y cùng dấu
\(\Rightarrow\left(x;y\right)\in\left\{\left(1;2\right);\left(-1;-2\right)\right\}\)
=>\(\frac{x}{2}=\frac{y}{4}=>\frac{x^4}{16}=\frac{y^4}{256}=\frac{x^4.y^4}{16.256}=\frac{16}{4096}=\frac{1}{256}\)
=>\(\begin{cases}x=1\\x=-1\end{cases}\)
=>\(\begin{cases}y=2\\y=-2\end{cases}\)
vậy:
\(x=1;y=2\)
\(x=-1;y=-2\)
Ta có : \(8^x:2^x=16^{2017}\Leftrightarrow2^{3x}:2^x=2^{4.2017}\Leftrightarrow2^{2x}=2^{8086}\Rightarrow2x=8086\Rightarrow x=4043\)
Vậy x =4043
b) \(3^{x+1}=9^x\)
\(3^{x+1}=\left(3^2\right)^x\) c)
\(3^{x+1}=3^{2x}\)
\(\Rightarrow x+1=2x\)
\(1=2x-x\)
\(1=x\)
Vậy x=1
x=1;2
sai roi