Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1. Giải:
Do \(5x+13B\in\left(2x+1\right)\Rightarrow5x+13⋮2x+1.\)
\(\Rightarrow2\left(5x+13\right)⋮2x+1\Rightarrow10x+26⋮2x+1.\)
\(\Rightarrow5\left(2x+1\right)+21⋮2x+1.\)
Do 5(2x+1)⋮2x+1⇒ Ta cần 21⋮2x+1.
⇒ 2x+1 ϵ B(21)=\(\left\{1;3;7;21\right\}.\)
Ta có bảng:
2x+1 | 1 | 3 | 7 | 21 |
x | 0 | 1 | 3 | 10 |
TM | TM | TM | TM |
Vậy xϵ\(\left\{0;1;3;10\right\}.\)
2. Giải:
Do (2x-18).(3x+12)=0.
⇒ 2x-18=0 hoặc 3x+12=0.
⇒ 2x =18 3x =-12.
⇒ x =9 x =-4.
Vậy xϵ\(\left\{-4;9\right\}.\)
3. S= 1-2-3+4+5-6-7+8+...+2021-2022-2023+2024+2025.
S= (1-2-3+4)+(5-6-7+8)+...+(2021-2022-2023+2024)+2025 Có 506 cặp.
S= 0 + 0 + ... + 0 + 2025.
⇒S= 2025.
\(\frac{2}{6}+\frac{2}{12}+\frac{2}{20}+...+\frac{2}{x\left(x+1\right)}=\frac{2013}{2015}\)
\(2\left(\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{x\left(x+1\right)}\right)=\frac{2013}{2015}\)
\(\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{x}-\frac{1}{x+1}=\frac{2013}{2015}:2\)
\(\frac{1}{2}-\frac{1}{x+1}=\frac{2013}{4030}\)
tự làm tiếp nhé mk ăn cơm đã
\(1,-\frac{1}{5}x-\frac{2}{3}=\frac{1}{10}x+\frac{5}{6}\)
\(-\frac{1}{5}x-\frac{2}{3}-\frac{1}{10}x-\frac{5}{6}=0\)
\(-\frac{3}{10}x-\frac{3}{2}=0\)
\(-\frac{3}{10}x=\frac{3}{2}\)
\(x=-5\)
\(2,2\left(x-\frac{1}{3}\right)-3\left(x-\frac{1}{2}\right)=\frac{1}{2}x\)
\(x-\frac{2}{3}-3x+\frac{3}{2}=\frac{1}{2}x\)
\(-2x+\frac{5}{6}=\frac{1}{2}x\)
\(-2x-\frac{1}{2}x+\frac{5}{6}=0\)
\(-\frac{5}{2}x=-\frac{5}{6}\)
\(x=\frac{1}{3}\)
Sửa đề: \(1+\dfrac{1}{3}+\dfrac{1}{6}+...+\dfrac{2}{x\left(x+1\right)}=1-\dfrac{2023}{2025}\)
=>\(\dfrac{2}{2}+\dfrac{2}{6}+...+\dfrac{2}{x\left(x+1\right)}=\dfrac{2}{2025}\)
=>\(\dfrac{1}{2}+\dfrac{1}{6}+...+\dfrac{1}{x\left(x+1\right)}=\dfrac{1}{2025}\)
=>\(\dfrac{1}{1\cdot2}+\dfrac{1}{2\cdot3}+...+\dfrac{1}{x\left(x+1\right)}=\dfrac{1}{2025}\)
=>\(1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+...+\dfrac{1}{x}-\dfrac{1}{x+1}=\dfrac{1}{2025}\)
=>\(1-\dfrac{1}{x+1}=\dfrac{1}{2025}\)
=>\(\dfrac{1}{x+1}=\dfrac{2024}{2025}\)
=>\(x+1=\dfrac{2025}{2024}\)
=>\(x=\dfrac{1}{2024}\)