Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(E=\sqrt{4x^2-4x+1}+\sqrt{4x^2-12x+9}\)
\(=\sqrt{\left(2x-1\right)^2}+\sqrt{\left(2x-3\right)^2}\)
\(=2x-1+2x-3\)
\(=4x-4\)
Làm nốt
5.
ĐKXĐ: ...
\(\Leftrightarrow3x^2-14x-5+\sqrt{3x+1}-4+1-\sqrt{6-x}=0\)
\(\Leftrightarrow\left(3x+1\right)\left(x-5\right)+\frac{3\left(x-5\right)}{\sqrt{3x+1}+4}+\frac{x-5}{1+\sqrt{6-x}}=0\)
\(\Leftrightarrow\left(x-5\right)\left(3x+1+\frac{3}{\sqrt{3x+1}+4}+\frac{1}{1+\sqrt{6-x}}\right)=0\)
\(\Leftrightarrow x=5\)
6.
ĐKXĐ: \(-4\le x\le4\)
\(\Leftrightarrow\frac{\left(\sqrt{x+4}-2\right)\left(\sqrt{x+4}+2\right)\left(\sqrt{4-x}+2\right)}{\sqrt{x+4}+2}=2x\)
\(\Leftrightarrow\frac{x\left(\sqrt{4-x}+2\right)}{\sqrt{x+4}+2}=2x\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\\frac{\sqrt{4-x}+2}{\sqrt{x+4}+2}=2\left(1\right)\end{matrix}\right.\)
\(\left(1\right)\Leftrightarrow\sqrt{4-x}+2=2\sqrt{x+4}+4\)
\(\Leftrightarrow2\sqrt{x+4}-\frac{4}{5}+\frac{14}{5}-\sqrt{4-x}=0\)
\(\Leftrightarrow\frac{2\left(x+4-\frac{4}{25}\right)}{\sqrt{x+4}+\frac{2}{5}}+\frac{\frac{196}{25}-4+x}{\frac{14}{5}+\sqrt{4-x}}=0\)
\(\Leftrightarrow\left(x-\frac{96}{25}\right)\left(\frac{2}{\sqrt{x+4}+\frac{2}{5}}+\frac{1}{\frac{14}{5}+\sqrt{4-x}}\right)=0\)
\(\Rightarrow x=\frac{96}{25}\)
1.
Bạn coi lại đề
2.
ĐKXĐ: \(1\le x\le2\)
Nhận thấy \(\sqrt{x+2}+\sqrt{x-1}>0;\forall x\) , nhân 2 vế của pt với nó:
\(\left(\sqrt{x+2}+\sqrt{x-1}\right)\left(\sqrt{x+2}-\sqrt{x-1}\right)\left(\sqrt{2-x}+1\right)=\sqrt{x+2}+\sqrt{x-1}\)
\(\Leftrightarrow3\left(\sqrt{2-x}+1\right)=\sqrt{x+2}+\sqrt{x-1}\)
\(\Leftrightarrow3\sqrt{2-x}+3=\sqrt{x+2}+\sqrt{x-1}\)
\(\Leftrightarrow3\sqrt{2-x}+2-\sqrt{x+2}+1-\sqrt{x-1}=0\)
\(\Leftrightarrow3\sqrt{2-x}+\frac{2-x}{2+\sqrt{x+2}}+\frac{2-x}{1+\sqrt{x-1}}=0\)
\(\Leftrightarrow\sqrt{2-x}\left(3+\frac{\sqrt{2-x}}{2+\sqrt{x+2}}+\frac{\sqrt{2-x}}{1+\sqrt{x-1}}\right)=0\)
\(\Leftrightarrow\sqrt{2-x}=0\Rightarrow x=2\)
a.\(\sqrt{x-2}=\sqrt{4-x}\)
đk: \(\left\{{}\begin{matrix}x-2\ge0\\4-x\ge0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x\ge2\\x\le4\end{matrix}\right.\Leftrightarrow2\le x\le4\)
pt đã cho tương đương với
\(x-2=4-x\)
\(\Leftrightarrow2x=6\Rightarrow x=3\left(TM\right)\)
b.\(\sqrt{x^2-8x+6}=x+2\)
đk: \(x+2\ge0\Rightarrow x\ge-2\)
pt đã cho tương đương với
\(x^2-8x+6=\left(x+2\right)^2\)
\(\Leftrightarrow x^2-8x+6=x^2+4x+4\)
\(\Leftrightarrow-12x=-2\Rightarrow x=\frac{1}{6}\left(TM\right)\)
c.\(\sqrt{2x-1}+5=\sqrt{8x-4}\)
\(\Leftrightarrow\sqrt{2x-1}+5=\sqrt{4\left(2x-1\right)}\)
\(\Leftrightarrow\sqrt{2x-1}+5=2\sqrt{2x-1}\)
\(\Leftrightarrow\sqrt{2x-1}=5\)
đk: \(2x-1\ge0\Leftrightarrow x\ge\frac{1}{2}\)
pt tương đương: \(2x-1=25\)
\(\Leftrightarrow2x=26\Rightarrow x=13\left(TM\right)\)
d.\(\sqrt{16-32x}-\sqrt{12x}=\sqrt{3x}+\sqrt{9-18x}\)
\(\Leftrightarrow\sqrt{16\left(1-2x\right)}-\sqrt{4.3x}=\sqrt{3x}+\sqrt{9\left(1-2x\right)}\)
\(\Leftrightarrow4\sqrt{1-2x}-2\sqrt{3x}+3\sqrt{1-2x}\)
\(\Leftrightarrow\sqrt{1-2x}=3\sqrt{3x}\)
đk: \(\left\{{}\begin{matrix}1-2x\ge0\\3x\ge0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x\le\frac{1}{2}\\x\ge0\end{matrix}\right.\Leftrightarrow0\le x\le\frac{1}{2}\)
pt tương đương: \(1-2x=9.3x\)
\(\Leftrightarrow29x=1\Rightarrow x=\frac{1}{29}\left(TM\right)\)
e. \(\sqrt{x^2-9}-\sqrt{4x-12}=0\)
đk: \(\left\{{}\begin{matrix}\left(x-3\right)\left(x+3\right)\ge0\\4x-12\ge0\end{matrix}\right.\Leftrightarrow x\ge3\)
pt đã cho tương đương với
\(\sqrt{\left(x-3\right)\left(x+3\right)}-\sqrt{4\left(x-3\right)}=0\)
\(\Leftrightarrow\sqrt{x-3}.\sqrt{x+3}-2\sqrt{x-3}=0\)
\(\Leftrightarrow\sqrt{x-3}.\left(\sqrt{x+3}-2\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}\sqrt{x-3}=0\\\sqrt{x+3}-2=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x-3=0\Rightarrow x=3\left(TM\right)\\\sqrt{x+3}=2\Leftrightarrow x+3=4\Rightarrow x=1\left(KTM\right)\end{matrix}\right.\)
Câu 6:
ĐK: $x\geq 1$
PT $\Leftrightarrow \sqrt{(x-1)-2\sqrt{x-1}+1}-\sqrt{x-1}=1$
$\Leftrightarrow \sqrt{(\sqrt{x-1}-1)^2}=\sqrt{x-1}+1$
$\Leftrightarrow |\sqrt{x-1}-1|=\sqrt{x-1}+1$
Nếu $\sqrt{x-1}-1\geq 0$ thì PT trở thành:
$\sqrt{x-1}-1=\sqrt{x-1}+1\Leftrightarrow 2=0$ (vô lý)
Nếu $\sqrt{x-1}-1< 0$ (tương đương với $1\leq x< 2$ thì PT trở thành:
$1-\sqrt{x-1}=\sqrt{x-1}+1$
$\Leftrightarrow \sqrt{x-1}=0\Rightarrow x=1$ (thỏa mãn)
Vậy PT có nghiệm $x=1$
Câu 5:
ĐK: $x\geq 1$
PT $\Leftrightarrow \sqrt{(x-1)-4\sqrt{x-1}+4}+\sqrt{(x-1)-6\sqrt{x-1}+9}=1$
$\Leftrightarrow \sqrt{(\sqrt{x-1}-2)^2}+\sqrt{(\sqrt{x-1}-3)^2}=1$
$\Leftrightarrow |\sqrt{x-1}-2|+|\sqrt{x-1}-3|=1$
Áp dụng BĐT dạng $|a|+|b|\geq |a+b|$ ta có:
$|\sqrt{x-1}-2|+|\sqrt{x-1}-3|=|\sqrt{x-1}-2|+|3-\sqrt{x-1}|\geq |\sqrt{x-1}-2+3-\sqrt{x-1}|=1$
Dấu "=" xảy ra khi $(\sqrt{x-1}-2)(3-\sqrt{x-1})\geq 0$
$\Leftrightarrow 3\geq \sqrt{x-1}\geq 2$
$\Leftrightarrow 10\geq x\geq 5$. Kết hợp ĐKXĐ ta thấy những giá trị $x$ thỏa mãn $10\geq x\geq 5$ là nghiệm của pt.
+) Ta có: \(4\sqrt{3x}+\sqrt{12x}=\sqrt{27x}+6\) \(\left(ĐK:x\ge0\right)\)
\(\Leftrightarrow4\sqrt{3x}+2\sqrt{3x}=3\sqrt{3x}+6\)
\(\Leftrightarrow3\sqrt{3x}=6\)
\(\Leftrightarrow\sqrt{3x}=2\)
\(\Leftrightarrow3x=4\)
\(\Leftrightarrow x=\frac{4}{3}\left(TM\right)\)
Vậy \(S=\left\{\frac{4}{3}\right\}\)
+) Ta có:\(\sqrt{x^2-1}-4\sqrt{x-1}=0\) \(\left(ĐK:x\ge1\right)\)
\(\Leftrightarrow\sqrt{x-1}.\sqrt{x+1}-4\sqrt{x-1}=0\)
\(\Leftrightarrow\sqrt{x-1}.\left(\sqrt{x+1}-4\right)=0\)
\(\Leftrightarrow\hept{\begin{cases}\sqrt{x-1}=0\\\sqrt{x+1}-4=0\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x-1=0\\\sqrt{x+1}=4\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x-1=0\\x+1=16\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x=1\left(TM\right)\\x=15\left(TM\right)\end{cases}}\)
Vậy \(S=\left\{1,15\right\}\)
+) Ta có: \(\frac{\sqrt{x}-2}{2\sqrt{x}}< \frac{1}{4}\) \(\left(ĐK:x\ge0\right)\)
\(\Leftrightarrow\frac{\sqrt{x}-2}{2\sqrt{x}}-\frac{1}{4}< 0\)
\(\Leftrightarrow\frac{2.\left(\sqrt{x}-2\right)-\sqrt{x}}{4\sqrt{x}}< 0\)
\(\Leftrightarrow\frac{2\sqrt{x}-4-\sqrt{x}}{4\sqrt{x}}< 0\)
\(\Leftrightarrow\frac{\sqrt{x}-4}{4\sqrt{x}}< 0\)
Để \(\frac{\sqrt{x}-4}{4\sqrt{x}}< 0\)mà \(4\sqrt{x}\ge0\forall x\)
\(\Rightarrow\)\(\sqrt{x}-4< 0\)
\(\Leftrightarrow\)\(\sqrt{x}< 4\)
\(\Leftrightarrow\)\(x< 16\)
Kết hợp ĐKXĐ \(\Rightarrow\)\(0\le x< 16\)
Vậy \(S=\left\{\forall x\inℝ/0\le x< 16\right\}\)
\(4\sqrt{3x}+\sqrt{12x}=\sqrt{27x}+6\) (Đk: x \(\ge\)0)
<=> \(4\sqrt{3x}+2\sqrt{3x}-3\sqrt{3x}=6\)
<=> \(3\sqrt{3x}=6\)
<=> \(\sqrt{3x}=2\)
<=> \(3x=4\)
<=> \(x=\frac{4}{3}\)
\(\sqrt{x^2-1}-4\sqrt{x-1}=0\) (đk: x \(\ge\)1)
<=> \(\sqrt{x-1}.\sqrt{x+1}-4\sqrt{x-1}=0\)
<=> \(\sqrt{x-1}\left(\sqrt{x+1}-4\right)=0\)
<=> \(\orbr{\begin{cases}\sqrt{x-1}=0\\\sqrt{x+1}-4=0\end{cases}}\)
<=> \(\orbr{\begin{cases}x-1=0\\x+1=16\end{cases}}\)
<=> \(\orbr{\begin{cases}x=1\\x=15\end{cases}}\)(tm)
\(\frac{\sqrt{x}-2}{2\sqrt{x}}< \frac{1}{4}\) (Đk: x > 0)
<=> \(\frac{\sqrt{x}-2}{2\sqrt{x}}-\frac{1}{4}< 0\)
<=>\(\frac{2\sqrt{x}-4-\sqrt{x}}{4\sqrt{x}}< 0\)
<=> \(\frac{\sqrt{x}-4}{4\sqrt{x}}< 0\)
Do \(4\sqrt{x}>0\) => \(\sqrt{x}-4< 0\)
<=> \(\sqrt{x}< 4\) <=> \(x< 16\)
Kết hợp với đk => S = {x|0 < x < 16}
1) ĐK: \(x\ge0\)
PT \(\Leftrightarrow\frac{2}{3}\sqrt{12x}+\sqrt{12x}-\frac{1}{3}\sqrt{3x}=9\)
\(\Leftrightarrow\frac{5}{3}\sqrt{12x}-\frac{1}{3}\sqrt{3x}=9\)
\(\Leftrightarrow3\sqrt{3x}=9\) \(\Leftrightarrow x=3\left(TM\right)\)
Vậy \(x=3\)
2) ĐK: \(x\ge0\)
PT \(\Leftrightarrow7\sqrt{2x}=14\) \(\Leftrightarrow x=2\left(TM\right)\)
Vậy \(x=2\)
Tìm miền xác định phải không
a)
\(1-\sqrt{2x-x^2}\)
a xác định \(\Leftrightarrow2x-x^2\ge0\)
\(0\le x\le2\)
b)
\(\sqrt{-4x^2+4x-1}\)
b xác định
\(\Leftrightarrow-4x^2+4x-1\ge0\)
\(-\left(4x^2-4x+1\right)\ge0\)
\(4x^2-4x+1\le0\)
\(\left(2x-1\right)^2\le0\)
2x - 1 = 0
x = 1/2
c)
\(\frac{x}{\sqrt{5x^2-3}}\)
c xác định
\(\Leftrightarrow5x^2-3>0\)
\(5x^2>3\)
\(x^2>\frac{3}{5}\)
\(\orbr{\begin{cases}x< -\frac{\sqrt{15}}{5}\\x>\frac{\sqrt{15}}{5}\end{cases}}\)
d)
d xác định
\(\Leftrightarrow\sqrt{x-\sqrt{2x-1}}>0\)
\(x-\sqrt{2x-1}>0\)
\(x>\sqrt{2x-1}\)
\(\hept{\begin{cases}2x-1\ge0\\x^2>2x-1\end{cases}}\)
\(\hept{\begin{cases}x\ge\frac{1}{2}\\x^2-2x+1>0\end{cases}}\)
\(\hept{\begin{cases}x\ge\frac{1}{2}\\\left(x-1\right)^2>0\end{cases}}\)
\(\hept{\begin{cases}x\ge\frac{1}{2}\\x-1\ne0\end{cases}}\)
\(\hept{\begin{cases}x\ge\frac{1}{2}\\x\ne1\end{cases}}\)
e)
e xác định
\(\Leftrightarrow\frac{-2x^2}{3x+2}\ge0\)
\(3x+2< 0\) ( vì \(-2x^2\le0\forall x\) )
\(x< -\frac{2}{3}\)
f)
f xác định
\(\Leftrightarrow x^2+x-2>0\)
\(\orbr{\begin{cases}x< -2\\x>1\end{cases}}\)
1) \(\sqrt{2-3x}+\sqrt{8-12x}=3\) (1) ĐKXĐ: \(x\le\dfrac{2}{3}\)
(1)\(\Leftrightarrow\sqrt{2-3x}+\sqrt{4\left(2-3x\right)}=3\)
\(\Leftrightarrow\sqrt{2-3x}+2\sqrt{2-3x}=3\)
\(\Leftrightarrow3\sqrt{2-3x}=3\)
\(\Leftrightarrow\sqrt{2-3x}=1\)
\(\Leftrightarrow2-3x=1\)
\(\Leftrightarrow x=\dfrac{1}{3}\) (Thỏa mãn)
Vậy \(x=\dfrac{1}{3}\) để \(\sqrt{2-3x}+\sqrt{8-12x}=3\)
2) \(4\sqrt{2x}+10\sqrt{8x}-9\sqrt{8x}+20=-10\) (2) ĐKXĐ: \(x\ge0\)
(2)\(\Leftrightarrow4\sqrt{2x}+20\sqrt{2x}-18\sqrt{2x}=-30\)
\(\Leftrightarrow6\sqrt{2x}=-30\)
\(\Leftrightarrow\sqrt{2x}=-5\)
Vì \(\sqrt{2x}\ge0\) với mọi x
\(\Rightarrow\) Không có giá trị của x để \(4\sqrt{2x}+10\sqrt{8x}-9\sqrt{8x}+20=-10\)