Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)\(\sqrt{x^2+x+\frac{1}{4}}-\sqrt{4-2\sqrt{3}}=0\)
\(\Leftrightarrow\sqrt{\left(x+\frac{1}{2}\right)^2}-\sqrt{\left(\sqrt{3}-1\right)^2}=0\)
\(\Leftrightarrow x+\frac{1}{2}-\sqrt{3}+1=0\)
\(\Leftrightarrow x=\sqrt{3}-1-\frac{1}{2}\)
\(\Leftrightarrow x=\sqrt{3}-\frac{3}{2}\)
b)\(x-5\sqrt{x}+6=0\)
\(\Leftrightarrow x-2\sqrt{x}-3\sqrt{x}+6=0\)
\(\Leftrightarrow\sqrt{x}\left(\sqrt{x}-2\right)-3\left(\sqrt{x}-2\right)=0\)
\(\Leftrightarrow\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)=0\)
\(\Leftrightarrow\left[\begin{array}{nghiempt}\sqrt{x}-2=0\\\sqrt{x}-3=0\end{array}\right.\) \(\Leftrightarrow\left[\begin{array}{nghiempt}\sqrt{x}=2\\\sqrt{x}=3\end{array}\right.\) \(\Leftrightarrow\left[\begin{array}{nghiempt}x=4\\x=9\end{array}\right.\)
ĐKXĐ: \(x\ne1\)
\(x^2+\frac{x^2}{\left(x-1\right)^2}=\frac{5}{4}\)
\(\Leftrightarrow\frac{x^2\left(x-1\right)^2+x^2}{\left(x-1\right)^2}=\frac{5}{4}\)
\(\Leftrightarrow\frac{x^4-2x^3+2x^2}{x^2-2x+1}=\frac{5}{4}\)
\(\Rightarrow\left(x^4-2x^3+2x^2\right).4=5\left(x^2-2x+1\right)\)
\(\Leftrightarrow4x^4-8x^3+8x^2-\left(5x^2-10x+5\right)=0\)
\(\Leftrightarrow4x^4-8x^3+3x^2+10x-5=0\)
\(\Leftrightarrow4x^3\left(x+1\right)-12x^2\left(x+1\right)+15x\left(x+1\right)-5\left(x+1\right)=0\)
\(\Leftrightarrow\left(x+1\right)\left(4x^3-12x^2+15x-5\right)=0\)
\(\Leftrightarrow\left(x+1\right)\left[2x^2\left(2x-1\right)-5x\left(2x-1\right)+5\left(2x-1\right)\right]=0\)
\(\Leftrightarrow\left(x+1\right)\left(2x-1\right)\left(2x^2-5x+5\right)=0\)
Mà \(2x^2-5x+5=2\left(x-\frac{5}{4}\right)^2+\frac{30}{16}>0\forall x\)
Do đó: \(\orbr{\begin{cases}x+1=0\\2x-1=0\end{cases}\Rightarrow}\orbr{\begin{cases}x=-1\\x=\frac{1}{2}\end{cases}}\)
2) \(\frac{1}{5}\sqrt{25x+50}-5\sqrt{x+2}+\sqrt{9x+18}+9=0\)
\(\frac{1}{5}\sqrt{25\left(x+2\right)}-5\sqrt{x+2}+\sqrt{9x+18}+9=0\)
\(\frac{1}{5}.\sqrt{25}.\sqrt{x+2}-5\sqrt{x+2}+\sqrt{9x+18}+9=0\)
\(\frac{1}{5}.5\sqrt{x+2}-5\sqrt{x+2}+\sqrt{9x+18}+9=0\)
\(\frac{1}{5}.5\sqrt{x+2}-5\sqrt{x+2}+\sqrt{9\left(x+2\right)}+9=0\)
\(\frac{1}{5}.5\sqrt{x+2}-5\sqrt{x+2}+\sqrt{9}.\sqrt{x+2}+9=0\)
\(\frac{1}{5}.5\sqrt{x+2}-5\sqrt{x+2}+3\sqrt{x+2}+9=0\)
\(\sqrt{x+2}-5\sqrt{x+2}+3\sqrt{x+2}+9=0\)
\(-\sqrt{x+2}=-9\)
\(x+2=81\)
\(\Rightarrow x=79\)
3) \(\sqrt{x^2-4x+4}=7x-1\)
\(\sqrt{x^2-2.x.2+2^2}=7x-1\)
\(\sqrt{\left(x-2\right)^2}=7x-1\)
\(x-2=7x-1\)
\(-2=7x-1-x\)
\(-2+1=7x-x\)
\(-1=6x\)
\(-\frac{1}{6}=x\)
\(\Rightarrow x=-\frac{1}{6}\)
a) \(A=5+\sqrt{-4x^2-4x}\)
\(A==5+\sqrt{-4x\left(x+1\right)}\)
Có: \(-4x\left(x+1\right)\le0\)
\(\Rightarrow\sqrt{-4x\left(x+1\right)}=0\)
\(\Rightarrow\orbr{\begin{cases}x=0\\x=-1\end{cases}}\)
Vậy: \(Max_A=5\) tại \(\orbr{\begin{cases}x=0\\x=-1\end{cases}}\)
b) \(B=\sqrt{x-2}+\sqrt{4-x}\)
ĐKXĐ: \(\hept{\begin{cases}x\ge2\\x\le4\end{cases}}\Rightarrow x\in\left\{2;3;4\right\}\)
Thay \(x=2\Rightarrow\sqrt{2-2}+\sqrt{4-2}=\sqrt{2}\)
Thay \(x=3\Rightarrow\sqrt{3-1}+\sqrt{4-3}=2\)
Thay \(x=4\Rightarrow\sqrt{4-2}+\sqrt{4-4}=\sqrt{2}\)
Vậy: \(Max_B=2\) tại \(x=3\)
Bài 2:
a)\(A=\sqrt{x^2-2x+1}+\sqrt{x^2-4x+4}+\sqrt{x^2-6x+9}\)
\(=\sqrt{\left(x-1\right)^2}+\sqrt{\left(x-2\right)^2}+\sqrt{\left(x-3\right)^2}\)
\(=\left|x-1\right|+\left|x-2\right|+\left|x-3\right|\)
\(\ge x-1+0+3-x=2\)
Dấu = khi \(\hept{\begin{cases}x-1\ge0\\x-2=0\\x-3\ge0\end{cases}}\Leftrightarrow\hept{\begin{cases}x\ge1\\x=2\\x\le3\end{cases}}\Leftrightarrow x=2\)
Vậy MinA=2 khi x=2
1.a) \(\sqrt{x^2-4}-\sqrt{x-2}=0\)
\(\Leftrightarrow\sqrt{\left(x-2\right)\left(x+2\right)}-\sqrt{x-2}=0\)
\(\Leftrightarrow\sqrt{x-2}.\sqrt{x+2}-\sqrt{x-2}=0\)
\(\Leftrightarrow\sqrt{x-2}.\left(\sqrt{x+2}-1\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}\sqrt{x-2}=0\\\sqrt{x+2}-1=0\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x-2=0\\\sqrt{x+2}=1\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=2\\x+2=1\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=2\\x=-1\end{cases}}\)
Vậy x=2 hoặc x=-1
a) ĐKXĐ: \(\hept{\begin{cases}\sqrt{2x-1}\ge0\\\sqrt{x-\sqrt{2x-1}}\ge0\end{cases}\Leftrightarrow\hept{\begin{cases}x\ge\frac{1}{2}\\x\ge\sqrt{2x-1}\Leftrightarrow\left(x-1\right)^2\ge0,\forall x\end{cases}\Rightarrow}x\ge\frac{1}{2}}\)(1)
Bình phương 2 vế PT ta được: \(2\sqrt{\left(x+\sqrt{2x-1}\right)\left(x-\sqrt{2x-1}\right)}=2-2x\Leftrightarrow\sqrt{\left(x\right)^2-\left(\sqrt{2x-1}\right)^2}=1-x\)
\(\Leftrightarrow\sqrt{x^2-2x+1}=1-x\Leftrightarrow\left|x-1\right|=1-x\Rightarrow x-1\le0\)(vì \(\left|a\right|=-a\))
\(\Rightarrow x\le1\)(2)
Kết hợp (1) và (2) ta được tập nghiệm của PT là \(\frac{1}{2}\le x\le1\)
b) ĐKXĐ: \(\hept{\begin{cases}\sqrt{2x-5}\ge0\\x-2-\sqrt{2x-5}\ge0\end{cases}\Leftrightarrow\hept{\begin{cases}x\ge\frac{5}{2}\\\left(x-2\right)^2\ge2x-5\Leftrightarrow\left(x-3\right)^2\ge0,\forall x\end{cases}\Rightarrow}x\ge\frac{5}{2}}\)(1)
Bình phương 2 vế PT ta được: \(2\sqrt{\left(x+2+3\sqrt{2x-5}\right)\left(x-2-\sqrt{2x-5}\right)}=2\left(4-x-\sqrt{2x-5}\right)\)
Đặt \(x+2=a;\sqrt{2x-5}=b\)(\(b\ge0\)), ta được phương trình tương đương:
\(\sqrt{\left(a+3b\right)\left(a-4-b\right)}=-a+6-b\)
\(\Leftrightarrow a^2-4a-ab+3ab-12b-3b^2=36+a^2+b^2+2ab-12a-12b\)
\(\Leftrightarrow4b^2-8a+36=0\Leftrightarrow b^2=2a-9\Leftrightarrow2x-5=2x+4-9\Leftrightarrow x\in R\)(2)
Kết hợp (1) và (2) ta được tập nghiệm của PT là \(x\ge\frac{5}{2}\)
Ta có: 1 - 4 x + 4 x 2 = 5 ⇔ 1 - 2 x 2 = 5
⇔ |1 - 2x| = 5 (3)
* Trường hơp 1: 1 - 2x ≥ 0 ⇔ 2x ≤ 1 ⇔ x ≤ 1/2 ⇒ |1 - 2x| = 1 - 2x
Suy ra: 1 - 2x = 5 ⇔ -2x = 5 - 1 ⇔ x = -2
Giá trị x = -2 thỏa mãn điều kiện x ≤ 1/2
Vậy x = -2 là nghiệm của phương trình (3).
* Trường hợp 2: 1 - 2x < 0 ⇔ 2x > 1 ⇔ x > 12 ⇒ |1 - 2x| = 2x - 1
Suy ra: 2x - 1 = 5 ⇔ 2x = 5 + 1 ⇔ x = 3
Giá trị x = 3 thỏa mãn điều kiện x > 1/2
Vậy x = 3 là nghiệm của phương trình (3).
Vậy x = -2 và x = 3.