K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 9 2020

1, (2x+1)3 - (2x+1)(4x2-2x+1) - 3(2x-1)2 = 15

\(8x^3+12x^2+6x+1-8x^3-1-3\left(4x^2-4x+1\right)=15\)

\(12^2+6x-12x^2+12x-3=15\)

\(18x=18\)

⇔ x = 1

2, x(x-4)(x+4) - (x-5)(x2 +5x+25) = 13

\(x\left(x^2-16\right)-x^3+125=13\)

\(x^3-16x-x^3=-\text{112}\)

\(16x=112\)

⇔ x = 7

28 tháng 3 2020

Copy có khác, ko đọc đc j!!! heheʌl

Câu 3:

1)

a) Ta có: 3x−2=2x−33x−2=2x−3

⇔3x−2−2x+3=0⇔3x−2−2x+3=0

⇔x+1=0⇔x+1=0

hay x=-1

Vậy: x=-1

b) Ta có: 3−4y+24+6y=y+27+3y3−4y+24+6y=y+27+3y

⇔27+2y=27+4y⇔27+2y=27+4y

⇔27+2y−27−4y=0⇔27+2y−27−4y=0

⇔−2y=0⇔−2y=0

hay y=0

Vậy: y=0

c) Ta có: 7−2x=22−3x7−2x=22−3x

⇔7−2x−22+3x=0⇔7−2x−22+3x=0

⇔−15+x=0⇔−15+x=0

hay x=15

Vậy: x=15

d) Ta có: 8x−3=5x+128x−3=5x+12

⇔8x−3−5x−12=0⇔8x−3−5x−12=0

⇔3x−15=0⇔3x−15=0

⇔3(x−5)=0⇔3(x−5)=0

Vì 3≠0

nên x-5=0

hay x=5

Vậy: x=5

29 tháng 3 2020

a) 3x - 2 = 2x - 3

\(\Leftrightarrow\) 3x - 2 - 2x + 3 = 0

\(\Leftrightarrow\) x + 1 = 0

\(\Rightarrow\) x = -1

b) 3 - 4y + 24 + 6y = y + 27 + 3y

\(\Leftrightarrow\) 3 - 4y + 24 + 6y - y - 27 - 3y = 0

\(\Leftrightarrow\) -2y = 0

\(\Rightarrow\) y = 0

c)7 - 2x = 22 - 3x

\(\Leftrightarrow\) 7 - 2x - 22 + 3x = 0

\(\Leftrightarrow\) -15 + x = 0

\(\Rightarrow\) x = 15

d) 8x - 3 = 5x + 12

\(\Leftrightarrow\) 8x - 3 - 5x - 12 = 0

\(\Leftrightarrow\)3x -15 = 0

\(\Leftrightarrow\) 3x = 15

\(\Rightarrow\) x = 5

e) x - 12 + 4x = 25 + 2x - 1

\(\Leftrightarrow\) x - 12 + 4x - 25 - 2x + 1 = 0

\(\Leftrightarrow\) 3x - 36 = 0

\(\Leftrightarrow\) 3x = 36

\(\Rightarrow\) x = 12

f ) x + 2x + 3x - 19 = 3x + 5

\(\Leftrightarrow\) x + 2x + 3x - 19 - 3x - 5 = 0

\(\Leftrightarrow\)3x - 24 = 0

\(\Leftrightarrow\) 3x = 24

\(\Rightarrow\) x = 8

g) 11+ 8x - 3 = 5x - 3 +x

\(\Leftrightarrow\)8x + 8 = 6x - 3

\(\Leftrightarrow\)8x - 6x = -3 - 8

\(\Leftrightarrow\)2x = -11

\(\Rightarrow\)x = \(-\frac{11}{2}\)

h) 4 - 2x +15 = 9x + 4 -2

\(\Leftrightarrow\)19 - 2x = 7x + 4

\(\Leftrightarrow\)-2x - 7x = 4 - 19

\(\Leftrightarrow\)-9x = -15

\(\Rightarrow\)x = \(\frac{15}{9}\) = \(\frac{5}{3}\)

12 tháng 1 2017

1. \(\left(x-4\right)^2-25=0\)

<=> (x-4+5).(x-4-5) = 0

<=> (x+1)(x-9) = 0

<=> \(\left[\begin{matrix}x+1=0\\x-9=0\end{matrix}\right.\Leftrightarrow\left[\begin{matrix}x=-1\\x=9\end{matrix}\right.\)

Vậy phương trình có tập nghiệm S = {-1;9}

2. \(\left(2x-1\right)^2+\left(2-x\right)\left(2x-1\right)=0\)

<=> (2x-1)(2x-1+2-x) = 0

<=> (2x-1)(x+1) = 0

<=> \(\left[\begin{matrix}2x-1=0\\x+1=0\end{matrix}\right.\Leftrightarrow\left[\begin{matrix}2x=1\\x=-1\end{matrix}\right.\Leftrightarrow\left[\begin{matrix}x=0.5\\x=-1\end{matrix}\right.\)

Vậy phương trình có tập nghiệm S = {-1 ; 0,5}

3. \(x^2+6x+9=4x^2\)

<=> \(\left(x+3\right)^2-4x^2=0\)

<=> (x+3+2x)(x+3-2x) = 0

<=> (3x+3)(3-x) = 0

<=> \(\left[\begin{matrix}3x+3=0\\3-x=0\end{matrix}\right.\Leftrightarrow\left[\begin{matrix}3x=-3\\x=3\end{matrix}\right.\Leftrightarrow}\left[\begin{matrix}x=-1\\x=3\end{matrix}\right.\) Vậy phương trình có tập nghiệm S = {-1 ; 3}

4. (2x-5)(x+11) = (5-2x)(2x+1)

<=> (2x-5)(x+11) = - (2x-5)(2x+1)

<=> x + 11 = -2x - 1

<=> x+2x = -12

<=> 3x = -12

<=> x = -4

Vậy phương trình có một nghiệm duy nhất là x = -4

5. \(2x^2+5x+3=0\)

<=> \(2x^2+2x+3x+3=0\)

<=> \(2x\left(x+1\right)+3\left(x+1\right)=0\)

<=> \(\left(x+1\right)\left(2x+3\right)=0\)

<=> \(\left[\begin{matrix}x+1=0\\2x+3=0\end{matrix}\right.\Leftrightarrow\left[\begin{matrix}x=-1\\2x=-3\end{matrix}\right.\Leftrightarrow}\left[\begin{matrix}x=-1\\x=\frac{-3}{2}\end{matrix}\right.\) Vậy phương trình có tập nghiệm S = { -1 ; -3/2 }

12 tháng 1 2017

1) (x-4)^2-25=0

<=> (x-4+5)(x-4-5)=0

\(\Leftrightarrow\left[\begin{matrix}x=-1\\x=9\end{matrix}\right.\)

2) (2x-1)2+(2-x)(2x-1)=0

<=> (2x-1)(2+2-x)=0

<=> \(\left[\begin{matrix}x=\frac{1}{2}\\x=4\end{matrix}\right.\)

3) x^2+6x+9=4x^2

<=> 3x^2 -6x-9=0

<=> x^2 -2x -3=0

<=> x^2 -3x+x-3=0

<=> x(x-3)+(x-3)=0

<=> (x-3)(x+1)=0

=>\(\left[\begin{matrix}x=3\\x=-1\end{matrix}\right.\)

4) (2x-5)(x+11)=(5-2x)(2x+1)

-(5-2x)(x+11)-(5-2x)(2x+1)=0

(5-2x)(x+11+2x+1)=0

=>\(\left[\begin{matrix}x=\frac{5}{2}\\x=-4\end{matrix}\right.\)

5)2x^2+5x+3=0

2x^2+2x+3x+3=0

2x(x+1)+3(x+1)=0

(x+1)(2x+3)=0

=>\(\left[\begin{matrix}x=-1\\x=\frac{-3}{2}\end{matrix}\right.\)

1 tháng 1 2018

a) \(\dfrac{x^2+2}{x^3-1}+\dfrac{2}{x^2+x+1}+\dfrac{1}{1-x}\)

\(=\dfrac{x^2+2}{\left(x-1\right)\left(x^2+x+1\right)}+\dfrac{2}{x^2+x+1}-\dfrac{1}{x-1}\)

\(=\dfrac{x^2+2+2\left(x-1\right)-\left(x^2+x+1\right)}{\left(x-1\right)\left(x^2+x+1\right)}\)

\(=\dfrac{x^2+2+2x-2-x^2-x-1}{\left(x-1\right)\left(x^2+x+1\right)}\)

\(=\dfrac{x-1}{\left(x-1\right)\left(x^2+x+1\right)}\)

\(=\dfrac{1}{x^2+x+1}\)

b) \(\dfrac{9}{x^3-9x}-\dfrac{-1}{x+3}\)

\(=\dfrac{9}{x\left(x-3\right)\left(x+3\right)}+\dfrac{1}{x+3}\)

\(=\dfrac{9+x\left(x-3\right)}{x\left(x-3\right)\left(x+3\right)}\)

\(=\dfrac{9+x^2-3x}{x\left(x-3\right)\left(x+3\right)}\)

c) \(\dfrac{x^3-8}{5x+10}.\dfrac{x^2+4x}{x^2+2x+4}\)

\(=\dfrac{x\left(x-2\right)\left(x^2+2x+4\right)\left(x+4\right)}{5\left(x+2\right)\left(x^2+2x+4\right)}\)

\(=\dfrac{x\left(x-2\right)\left(x+4\right)}{5\left(x+2\right)}\)

d) \(\dfrac{5x+10}{4x-8}.\dfrac{4-2x}{x+2}\)

\(=\dfrac{5\left(x+2\right)}{4\left(x-2\right)}.\dfrac{2\left(2-x\right)}{x+2}\)

\(=-\dfrac{10\left(x+2\right)\left(x-2\right)}{4\left(x-2\right)\left(x+2\right)}\)

\(=-\dfrac{5}{2}\)

e) \(\dfrac{\left(x-13\right)^2}{2x^5}.\dfrac{-3x^2}{x-13}\)

\(=\dfrac{x-13}{2x^3}.\dfrac{-3}{1}\)

\(=\dfrac{-3\left(x-13\right)}{2x^3}\)

g) \(\dfrac{x^2+6x+9}{1-x}.\dfrac{\left(x-1\right)^2}{2\left(x+3\right)^2}\)

\(=-\dfrac{\left(x+3\right)^2}{x-1}.\dfrac{\left(x-1\right)^2}{2\left(x+3\right)^2}\)

\(=-\dfrac{\left(x+3\right)^2\left(x-1\right)^2}{2\left(x-1\right)\left(x+3\right)^2}\)

\(=-\dfrac{x-1}{2}\).

4 tháng 8 2019

\(\frac{3}{x+1}+\frac{2}{x+2}=\frac{5x+4}{x^2+3x+2}.\)ĐKXĐ: \(x\ne-1;-2\)

\(\Leftrightarrow\frac{3\left(x+2\right)}{\left(x+1\right)\left(x+2\right)}+\frac{2\left(x+1\right)}{\left(x+1\right)\left(x+2\right)}=\frac{5x+4}{\left(x+1\right)\left(x+2\right)}\)

\(\Leftrightarrow3x+6+2x+2=5x+4\)

\(\Leftrightarrow3x+2x-5x=-6-2+4\)

\(\Leftrightarrow0x=-4\)

=> PT vô nghiệm 

\(2;\frac{2}{3x-1}-\frac{15}{6x^2-x-1}=\frac{3}{2x-1}\)

\(\Leftrightarrow\frac{2\left(2x-1\right)}{\left(2x-1\right)\left(3x-1\right)}-\frac{15}{6x^2+3x-2x-1}=\frac{3\left(3x-1\right)}{\left(2x-1\right)\left(3x-1\right)}\)

\(\Leftrightarrow\frac{4x-2-15}{\left(2x-1\right)\left(3x-1\right)}=\frac{9x-3}{\left(2x-1\right)\left(3x-1\right)}\)

\(\Leftrightarrow4x-2-15=9x-3\)

\(\Leftrightarrow4x-9x=2+15-3\)

\(\Leftrightarrow-5x=14\)

.....

4 tháng 8 2019

mấy cái này mẫu nào dài cậu phân tích ra : 

VD : câu  3 : \(3x^2-4x+1\)

\(=3x^2-3x-x+1\)

\(=3x\left(x-1\right)-\left(x-1\right)\)

\(=\left(3x-1\right)\left(x-1\right)\)

r bắt đầu giải PHương trình :)) Mấy câu còn lại tương tự 

18 tháng 7 2017

a) \(\left(4x-1\right)^2-\left(3x+2\right)\left(3x-2\right)=\left(7x-1\right)\left(x+2\right)+\left(2x+1\right)^2-\left(4x^2+7\right)\)(1)

\(\Leftrightarrow\left(16x^2-8x+1\right)-\left(9x^2-4\right)=\left(7x^2+14x-x-2\right)+\left(4x^2+4x+1\right)-\left(4x^2+7\right)\)

\(\Leftrightarrow16x^2-8x+1-9x^2+4=7x^2+13x-2+4x^2+4x+1-4x^2-7\)

\(\Leftrightarrow7x^2-8x+5=7x^2+17x-8\)

\(\Leftrightarrow7x^2-8x-7x^2-17x=-8-5\)

\(\Leftrightarrow-25x=-13\)

\(\Leftrightarrow x=\dfrac{13}{25}\)

Vậy tập nghiệm phương trình (1) là \(S=\left\{\dfrac{13}{25}\right\}\)

18 tháng 7 2017

gắp cái gì

3 tháng 8 2020

\(5X\left(X-2020\right)+X=2020\)

\(\Leftrightarrow5X^2-10100X+X=2020\)

\(\Leftrightarrow5X^2-10099X=2020\)

\(\Leftrightarrow5X^2-10099X-2020=0\)

\(\Leftrightarrow5X^2-10100X+x-2020=0\)

\(\Leftrightarrow5X\left(X-2020\right)+X-2020=0\)

\(\Leftrightarrow\left(X-2020\right)\left(5X+1\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x=2020\\x=-\frac{1}{5}\end{cases}}\)

3 tháng 8 2020

\(4\left(x-5\right)^2-\left(2x+1\right)^2=0\)

\(\Leftrightarrow\left[2\left(x-5\right)\right]^2-\left(2x+1\right)^2=0\)

\(\Leftrightarrow\left[2\left(x-5\right)-2x-1\right]\left[2\left(x-5\right)+2x+1\right]=0\)

\(\Leftrightarrow\left(2x-10-2x-1\right)\left(2x-10+2x+1\right)=0\)

\(\Leftrightarrow-11\left(4x-9\right)=0\)

\(\Leftrightarrow x=\frac{9}{4}\)