K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 10 2021

ĐKXĐ:\(x\ge6\)

\(x-\sqrt{x-6}=0\\ \Leftrightarrow\sqrt{x-6}=x\\ \Leftrightarrow x-6=x^2\\ \Leftrightarrow x^2-x+6=0\\ \Leftrightarrow\left(x^2-x+\dfrac{1}{4}\right)+\dfrac{23}{4}=0\\ \Leftrightarrow\left(x-\dfrac{1}{2}\right)^2+\dfrac{23}{4}=0\left(vôlí\right)\)

Vậy pt trên vô no

30 tháng 8 2020

a) Ta có:

\(P=\left(\frac{\sqrt{x}}{\sqrt{x}-1}-\frac{1}{x-\sqrt{x}}\right)\div\left(\frac{1}{\sqrt{x}+1}+\frac{2}{x-1}\right)\)

\(P=\frac{x-1}{\left(\sqrt{x}-1\right)\sqrt{x}}\div\frac{\sqrt{x}-1+2}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\)

\(P=\frac{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}{\left(\sqrt{x}-1\right)\sqrt{x}}\cdot\frac{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}{\sqrt{x}+1}\)

\(P=\frac{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}{\sqrt{x}}=\frac{x-1}{\sqrt{x}}\)

30 tháng 8 2020

b) Ta có: \(P>0\)

\(\Leftrightarrow\frac{x-1}{\sqrt{x}}>0\)

\(\Leftrightarrow\frac{\left(x-1\right)\sqrt{x}}{x}>0\)

\(\Rightarrow\left(x-1\right)\sqrt{x}>0\)

\(\Rightarrow\hept{\begin{cases}x-1>0\\\sqrt{x}>0\end{cases}}\Rightarrow x>1\)

Vậy khi \(x>1\Leftrightarrow P>0\)

c) Ta có: \(P=6\)

\(\Leftrightarrow\frac{x-1}{\sqrt{x}}=6\)

\(\Leftrightarrow x-1=6\sqrt{x}\)

\(\Leftrightarrow\left(x-1\right)^2=36x\)

\(\Leftrightarrow x^2-38x+1=0\)

\(\Leftrightarrow\left(x^2-38x+361\right)-360=0\)

\(\Leftrightarrow\left(x-19\right)^2-\left(6\sqrt{10}\right)^2=0\)

\(\Leftrightarrow\left(x-19-6\sqrt{10}\right)\left(x-19+6\sqrt{10}\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x-19-6\sqrt{10}=0\\x-19+6\sqrt{10}=0\end{cases}}\Rightarrow\orbr{\begin{cases}x=19+6\sqrt{10}\\x=19-6\sqrt{10}\end{cases}}\)

5 tháng 6 2018

1. Từ đề bài suy ra (x^2 -7x+6)=0 hoặc x-5=0

Nếu x-5=0 suy ra x=5

Nếu x^2-7x+6=0 suy ra x^2-6x-(x-6)=0

Suy ra x(x-6)-(x-6)=0 suy ra (x-1)(x-6)=0

Suy ra x=1 hoặc x=6.

4 tháng 7 2020

bài 1 ; \(\left(x^2-7x+6\right)\sqrt{x-5}=0\)

\(< =>\orbr{\begin{cases}x^2-7x+6=0\left(+\right)\\\sqrt{x-5}=0\left(++\right)\end{cases}}\)

\(\left(+\right)\)ta dễ dàng nhận thấy \(1-7+6=0\)

thì phương trình sẽ có nghiệm là \(\orbr{\begin{cases}x=1\\x=\frac{c}{a}=6\end{cases}}\)

\(\left(++\right)< =>x-5=0< =>x=5\)

Vậy tập nghiệm của phương trình trên là \(\left\{1;5;6\right\}\)

7 tháng 7 2017

a, ĐK \(\hept{\begin{cases}x>0\\x\ne1\end{cases}}\)

\(P=\frac{x-1}{\sqrt{x}}:\frac{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)+1-\sqrt{x}}{\sqrt{x}\left(\sqrt{x}+1\right)}\)

\(=\frac{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}{\sqrt{x}}.\frac{\sqrt{x}\left(\sqrt{x}+1\right)}{\sqrt{x}\left(\sqrt{x}-1\right)}=\frac{\left(\sqrt{x}+1\right)^2}{\sqrt{x}-1}\)

Ta thấy \(P=\frac{\left(\sqrt{x}+1\right)^2}{\sqrt{x}-1}>0\forall x>0,x\ne1\)

b, P=\(\frac{x+2\sqrt{x}+1}{\sqrt{x}-1}=\frac{\frac{2}{2+\sqrt{3}}+2\sqrt{\frac{2}{2+\sqrt{3}}}+1}{\sqrt{\frac{2}{2+\sqrt{3}}}-1}\)

=\(\frac{\frac{4}{\left(\sqrt{3}+1\right)^2}+2.\sqrt{\left(\frac{2}{\left(\sqrt{3}+1\right)^2}\right)}+1}{\sqrt{\left(\frac{2}{2+\sqrt{3}}\right)^2}-1}=\frac{\frac{4}{\left(\sqrt{3}+1\right)^2}+2.\frac{2}{\sqrt{3}+1}+1}{\frac{2}{\sqrt{3}+1}-1}\)

\(=\frac{12+6\sqrt{3}}{1-3}=-6-3\sqrt{3}\)

7 tháng 7 2017

cậu ơi câu c đâu ạ??

2 tháng 3 2016

ko nhìn dc j cả !?><

-_- thật đấy!

19 tháng 9 2019

cái này có phải bình phương hai vế nên ko nhỉ?

19 tháng 9 2019

Câu 6 có sai ko?

2/x+2 + 8/x+8 = 4/x+4 + 6/x+6 ( ĐK: x >= 0 ; x khác -2 ; -4 ; -6 ; -8 )
2(x+8) + 8(x+2) / (x+2)(x+8) = 4(x+6) + 6(x+4) / (x+4)(x+6)
<=> 2x +16 +8x +16 / x^2 + 8x + 2x + 16 = 4x +24 + 6x + 24 / x^2 + 10x + 24
<=> 10x + 32/ x^2 + 10x +16 = 10x + 48/ x^2 + 10x + 24
<=> (10x + 32)(x^2 + 10x + 24) = (10x + 48)(x^2 +10x + 16)
<=> 10x^3 + 100x^2 + 240x + 32x^2 + 320x + 768 = 10x^3 + 100x^2 + 160x + 48x^2 + 480x + 768
<=> 10x^3 + 132x^2 + 560x + 768 = 10x^3 + 148x^2 + 640x + 768
Lấy vế phải trừ vế trái , ta có :
<=> 16x^2 + 80x = 0
<=> 16x( x+ 5 ) = 0
<=> 16x = 0 hoặc x+ 5 = 0 ( Viết vào vở thì dùng móc vuông nha )
<=> x = 0 (TM) hoặc x = -5 (L)
Vậy x = 0

26 tháng 9 2020

Đáp án -5 sao lại loại ạ

11 tháng 9 2019

=(√x -2)*(√x -3) / (√x -3)

=√x -2

30 tháng 5 2017

a, Ta có : \(\frac{y}{x}.\sqrt{\frac{x^2}{y^4}}=\frac{y}{x}.\frac{x}{y^2}=\frac{1}{y}\)

b , Ta có : \(5xy\sqrt{\frac{x^2}{y^6}}=5xy\frac{x}{y^3}=\frac{5x^2}{y^2}\)

c, Ta có : \(0,2x^3y^3\sqrt{\frac{16}{x^4y^8}}=0,2x^3y^3.\frac{4}{x^2y^4}=\frac{0,8x}{y}\)

10 tháng 7 2019

Câu trên mình thấy sai sai vì nếu x càng lớn thì A càng nhỏ , bạn xem lại đề nhé

Câu 2

\(\frac{3}{2}x+\frac{6}{x}\ge6\)\(\frac{1}{2}y+\frac{8}{y}\ge4\)

\(\frac{3}{2}\left(x+y\right)\ge\frac{3}{2}.6=9\)

Cộng các bĐT trên

=> \(3x+2y+\frac{6}{x}+\frac{8}{y}\ge9+6+4=19\)

MinP=19 khi x=2;y=4

AH
Akai Haruma
Giáo viên
10 tháng 2 2018

Lời giải:

Đặt biểu thức đã cho là $A$

\(A=\sqrt{x^2+y^2}+\sqrt{xy}\)

\(\Rightarrow A^2=x^2+y^2+xy+2\sqrt{xy(x^2+y^2)}\)

Áp dụng BĐT AM-GM:

\(x^2+y^2\geq 2xy\Rightarrow 2\sqrt{xy(x^2+y^2)}\geq 2\sqrt{xy.2xy}\geq xy\) do \(x,y\geq 0\)

\(\Rightarrow A^2\geq x^2+y^2+xy+xy\Leftrightarrow A^2\geq (x+y)^2=4\)

\(\Leftrightarrow A\geq 2\) (đpcm)

Dấu bằng xảy ra khi \((x,y)=(2,0)\) và hoán vị.

Mặt khác:

Áp dụng BĐT Bunhiacopxky:

\(A^2=(\sqrt{x^2+y^2}+\sqrt{xy})^2\leq (x^2+y^2+2xy)(1+\frac{1}{2})\)

\(\Leftrightarrow A^2\leq (x+y)^2.\frac{3}{2}=4.\frac{3}{2}=6\)

\(\Leftrightarrow A\leq \sqrt{6}\) (đpcm)

Dấu bằng xảy ra khi \((x,y)=\left(\frac{3+\sqrt{3}}{3}; \frac{3-\sqrt{3}}{3}\right)\)

11 tháng 2 2018

cách làm cho lớp 9

\(2=x+y\ge2\sqrt{xy}\Rightarrow xy\le1\)

\(x;y\ge0\Rightarrow xy\ge0\) \(0\le xy\le1\)

đặt x y =t => 0<=t<=1

\(A=\sqrt{x^2+y^2}+\sqrt{xy}=\sqrt{4-2t}+\sqrt{t}\)

\(A>0;A^2=4-t+2\sqrt{4t-2t^2}\)

m =A^2 -4 \(\Leftrightarrow m+t=\sqrt{4t-2t^2}\)

m +t >= 0=> m>=-1

\(\Leftrightarrow m^2+2mt+t^2=4\left(4t-2t^2\right)\)

\(9t^2+2\left(m-8\right)t+m^2=0\)

\(\Delta'\ge0\Leftrightarrow\left(m-8\right)^2-9m^2\ge0\Rightarrow-8m^2-2.8m+64\ge0\)

\(-4\le m\le2\)

với m =2 => t=2/3 đảm bảo điều kiện => GTLN m =2

m cần đảm bảo điều kiện

m+t>=0

\(\Leftrightarrow m+\dfrac{-\left(m-8\right)-\sqrt{-8m^2-18m+64}}{9}\ge0\)

\(\Leftrightarrow\dfrac{9m-\left(m-8\right)-\sqrt{-8m^2-18m+64}}{9}\ge0\)

\(\Leftrightarrow8m+8\ge\sqrt{-8m^2-18m+64}\)

m>=-1 => 8m+8 >=0

\(\Leftrightarrow64m^2+2.8.8m+64\ge-8m^2-18m+64\)

\(\Leftrightarrow m^2+2m\ge0\Rightarrow\left[{}\begin{matrix}m\le-2\\m\ge0\end{matrix}\right.\) đang xét m>=1 => m>=0

=> \(0\le m\le2\)

\(0\le A^2-4\le2\Leftrightarrow4\le A^2\le6\)

\(A>0\Rightarrow2\le A\le\sqrt{6}\) =>dpcm

đẳng thức khi t =0 ; t=2/3

\(t=0\Rightarrow\left[{}\begin{matrix}\left(x;y\right)=\left(2;0\right)\\\left(x;y\right)=\left(0;2\right)\end{matrix}\right.\)

\(t=\dfrac{2}{3}\) giải hệ

\(\left\{{}\begin{matrix}x+y=2\\xy=\dfrac{2}{3}\end{matrix}\right.\)

x;y là nghiệm pt : \(3z^2-6z+2=0\)

\(\Delta=9-6=3\Rightarrow\left(x;y\right)=\left(\dfrac{3\pm\sqrt{3}}{3};\dfrac{3\mp\sqrt{3}}{3}\right)\)