Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(4x^2-8x=0\)
\(\Rightarrow4x\left(x-2\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}4x=0\\x-2=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=0+2\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=0\\x=2\end{matrix}\right.\)
Vậy \(x_1=0;x_2=2\)
b) \(\left(x+5\right)-3x\left(x+5\right)=0\)
\(\Rightarrow-3x^2-14x+5=0\)
\(\Leftrightarrow\left(-3x+1\right)\left(x+5\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}-3x+1=0\\x+5=0\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=\dfrac{1}{3}\\x=-5\end{matrix}\right.\)
Vậy \(x_1=-5;x_2=\dfrac{1}{3}\)
\(a,4x^2-8x=0\Rightarrow4x\left(x-8\right)=0\Rightarrow\left[{}\begin{matrix}4x=0\\x-8=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=0\\x=8\end{matrix}\right.\)\(b,\left(x+5\right)-3x\left(x+5\right)=0\Leftrightarrow\left(x+5\right)\left(1-3x\right)=0\Rightarrow\left[{}\begin{matrix}x+5=0\\1-3x=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=-5\\3x=1\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=-5\\x=\dfrac{1}{3}\end{matrix}\right.\)
a) (x-1)(5x+3)=(3x-8)(x-1)
= (x-1)(5x+3)-(3x-8)(x-1)=0
=(x-1)[(5x+3)-(3x-8)]=0
=(x-1)(5x+3-3x+8)=0
=(x-1)(2x+11)=0
\(\Leftrightarrow\) x-1=0 hoặc 2x+11=0
\(\Leftrightarrow\) x=1 hoặc x=\(\dfrac{-11}{2}\)
Vậy S={1;\(\dfrac{-11}{2}\)}
b) 3x(25x+15)-35(5x+3)=0
=3x.5(5x+3)-35(5x+3)=0
=15x(5x+3)-35(5x+3)=0
=(5x+3)(15x-35)=0
\(\Leftrightarrow\) 5x+3=0 hoặc 15x-35=0
\(\Leftrightarrow\) x=\(\dfrac{-3}{5}\) hoặc x=\(\dfrac{7}{3}\)
Vậy S={\(\dfrac{-3}{5};\dfrac{7}{3}\)}
c) (2-3x)(x+11)=(3x-2)(2-5x)
=(2-3x)(x+11)-(3x-2)(2-5x)=0
=(3x-2)[(x+11)-(2-5x)]=0
=(3x-2)(x+11-2+5x)=0
=(3x-2)(6x+9)=0
\(\Leftrightarrow\) 3x-2=0 hoặc 6x+9=0
\(\Leftrightarrow\) x=\(\dfrac{2}{3}\) hoặc x=\(\dfrac{-3}{2}\)
Vậy S={\(\dfrac{2}{3};\dfrac{-3}{2}\)}
d) (2x2+1)(4x-3)=(2x2+1)(x-12)
=(2x2+1)(4x-3)-(2x2+1)(x-12)=0
=(2x2+1)[(4x-3)-(x-12)=0
=(2x2+1)(4x-3-x+12)=0
=(2x2+1)(3x+9)=0
\(\Leftrightarrow\)2x2+1=0 hoặc 3x+9=0
\(\Leftrightarrow\)x=\(\dfrac{1}{2}\)hoặc x=\(\dfrac{-1}{2}\) hoặc x=-3
Vậy S={\(\dfrac{1}{2};\dfrac{-1}{2};-3\)}
e) (2x-1)2+(2-x)(2x-1)=0
=(2x-1)[(2x-1)+(2-x)=0
=(2x-1)(2x-1+2-x)=0
=(2x-1)(x+1)=0
\(\Leftrightarrow\) 2x-1=0 hoặc x+1=0
\(\Leftrightarrow\) x=\(\dfrac{-1}{2}\) hoặc x=-1
Vậy S={\(\dfrac{-1}{2}\);-1}
f)(x+2)(3-4x)=x2+4x+4
=(x+2)(3-4x)=(x+2)2
=(x+2)(3-4x)-(x+2)2=0
=(x+2)[(3-4x)-(x+2)]=0
=(x+2)(3-4x-x-2)=0
=(x+2)(-5x+1)=0
\(\Leftrightarrow\) x+2=0 hoặc -5x+1=0
\(\Leftrightarrow\) x=-2 hoặc x=\(\dfrac{1}{5}\)
Vậy S={-2;\(\dfrac{1}{5}\)}
\(a.\left(2-3x\right)\left(x^2+2x+3\right)=0.\)
\(\left(2-3x\right)=0\)
\(\left(x^2+2x+3\right)=0\)
\(TH1:2-3x=0\Leftrightarrow x=\frac{-2}{-3}\)
\(TH2:x^2+2x+3=0\Leftrightarrow\left(x^2+2x+1\right)+3\Leftrightarrow\left(x+1\right)^2+3>0\)
b) \(3x-3x=5+2\) ( vô nghiệm)
c) vô nghiệm
d-\(x^2-5x-6=0\Leftrightarrow\left(x^2-x\right)+\left(6x-6\right)\Leftrightarrow x\left(x-1\right)+6\left(x-1\right)\Leftrightarrow\left(x-1\right)\left(x+6\right)=0\)
vậy ...
x=1
x=-6
E) \(\frac{2\left(x-3\right)^2}{3}=\frac{3x^2}{2}\) quy đồng khử mẫu ta được
\(4\left(x-3\right)^2-9x^2=0\Leftrightarrow4\left(x-3\right)^2-\frac{4.1.9x^2}{4}\) rút 4 ta được
\(4\left\{\left(x-3\right)^2-\frac{9x^2}{4}\right\}=0\Leftrightarrow4\left\{\left(x-3\right)^2-\left(\frac{3}{2}x\right)^2\right\}\Leftrightarrow4\left(x-3+\frac{3}{2}x\right)\left(x-3-\frac{3}{2}x\right)=0\) ( hằng đẳng thức số 3 )
tích = 0
vậy ....
F) trị tuyệt đối + bình phương của 1 số thực luôn lớn hơn hoặc = 0( định lí Pain)
phá trị tuyệt đối ta được
\(\left(x+5\right)^2-\left(3x-2\right)^2=0\)
\(\left(x+5-3x-2\right)\left(x+5+3x-2\right)=0\) ( hẳng đẳng thức số 3 )
tích = 0 suy ra 2 TH vậy .....
g) câu G bạn lên coccoc math bạn ghi là nó ra kết quả phân tích thành nhân tử chứ làm = tay vừa dài vừa hại não :)
\(\left(x-1\right)\left(x-2\right)\left(x-3\right)\left(x-4\right)-24=0\)
\(x\left(x-5\right)x\left(x^2-5x+10\right)=0\) ( coccoc math)
\(\left(x^2-5x+10\right)=0\Leftrightarrow\left(x^2-\frac{2x.5}{2}+\left(\frac{5}{2}\right)^2\right)+10-\frac{25}{4}=0\) ( 10-25/4) = 15/4
\(\left(x+\frac{5}{2}\right)^2+\frac{15}{4}>0\) ( vô nghiệm)
vậy....
n) \(\left|3-x\right|+x^2-x\left(x+4\right)=0\)
\(\Rightarrow\left|3-x\right|+x^2-x^2-4x=0\)
\(\Leftrightarrow\left[{}\begin{matrix}3-x-4x=0\left(đk:3-x\ge0\right)\\-\left(3-x\right)-4x=0\left(đk:3-x< 0\right)\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{3}{5}\left(đk:x\le3\right)\\x=-1\left(đk:x>3\right)\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=\dfrac{3}{5}\\x\in\varnothing\end{matrix}\right.\)
Vậy \(x=\dfrac{3}{5}\)
m) \(\left(x-1\right)^2+\left|x+21\right|-x^2-13=0\)
\(\Rightarrow x^2-2x+1+\left|x+21\right|-x^2-13=0\)
\(\Leftrightarrow-2x-12+\left|x+21\right|=0\)
\(\Leftrightarrow\left[{}\begin{matrix}-2x-12+x+21=0\left(đk:x+21\ge0\right)\\-2x-12-\left(x+21\right)=0\left(đk:x+21< 0\right)\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=9\left(đk:x\ge-21\right)\\x=-11\left(đk:x< -21\right)\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=9\\x\in\varnothing\end{matrix}\right.\)
Vậy \(x=9\)
e) \(\left|5x\right|=3x-2\)
\(\Rightarrow5\cdot\left|x\right|=3x-2\)
\(\Leftrightarrow5\cdot\left|x\right|-3x=-2\)
\(\Leftrightarrow\left[{}\begin{matrix}5x-3x=-2\left(đk:x\ge0\right)\\5\cdot\left(-x\right)-3x=-2\left(đk:x< 0\right)\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=-1\left(đk:x\ge0\right)\\x=\dfrac{1}{4}\left(đk:x< 0\right)\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x\in\varnothing\\x\in\varnothing\end{matrix}\right.\)
Vậy \(x\in\varnothing\)
g) \(\left|-2,5x\right|=x-12\)
\(\Rightarrow2,5\cdot\left|x\right|=x-12\)
\(\Leftrightarrow2x5\cdot\left|x\right|-x=-12\)
\(\Leftrightarrow\left[{}\begin{matrix}2,5x-x=-12\left(đk:x\ge0\right)\\2,5\cdot\left(-x\right)-x=-12\left(đk:x< 0\right)\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=-8\left(đk:x\ge0\right)\\x=\dfrac{24}{7}\left(đk:x< 0\right)\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x\in\varnothing\\x\in\varnothing\end{matrix}\right.\)
Vậy \(x\in\varnothing\)
a) \(5x\left(3x-7\right)-15x\left(x-1\right)=3\)
\(\Rightarrow15x^2-35x-15x^2+15x=3\)
\(\Rightarrow-20x=3\)
\(\Rightarrow x=-\dfrac{3}{20}\)
b) \(\left(4x+2\right)\left(6x-3\right)-\left(8x+5\right)\left(3x-4\right)=2\)
\(\Rightarrow24x^2+12x-12x-6-24x^2-15x+24x+20=2\)
\(\Rightarrow9x+14=2\)
\(\Rightarrow9x=-12\)
\(\Rightarrow x=-\dfrac{4}{3}\)
c) \(7x^2-21x=0\)
\(\Rightarrow7x\left(x-3\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}7x=0\\x-3=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=0\\x=3\end{matrix}\right.\)
d) \(9x^2-6x+1=0\)
\(\Rightarrow\left(3x\right)^2-2.3x+1=0\)
\(\Rightarrow\left(3x-1\right)^2=0\)
\(\Rightarrow3x-1=0\)
\(\Rightarrow3x=1\)
\(\Rightarrow x=\dfrac{1}{3}\)
e) \(16x^2-49=0\)
\(\Rightarrow\left(4x\right)^2-7^2=0\)
\(\Rightarrow\left(4x-7\right)\left(4x+7\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}4x-7=0\\4x+7=0\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}4x=7\\4x=-7\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=\dfrac{7}{4}\\x=-\dfrac{7}{4}\end{matrix}\right.\)
f) \(5x^3-20x=0\)
\(\Rightarrow5x\left(x^2-4\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}5x=0\\x^2-4=0\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=5\\x^2=4\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=5\\x=2\\x=-2\end{matrix}\right.\)
Hướng dẫn thôi nha bạn.
Giải:
Bài 1.
- Nhân đơn thức với đa thức: Nhân đơn thức với từng hạng tử của đa thức. (Rút gọn các hạng tử đồng dạng)
VD: Câu a)
\(2x\left(x^2-7x-3\right)\)
\(=2x.x^2-2x.7x-2x.3\)
\(=2x^3-14x^2-6x\)
- Nhân đa thức với đa thức: Nhân từng hạng tử của đa thức này với từng hạng tử của đa thức kia. (Rút gọn các hạng tử đồng dạng)
VD: Câu e)
\(\left(x^2-2x+3\right)\left(x-4\right)\)
\(=x^2.x-x^2.4-2x.x+2x.4+3.x-3.4\)
\(=x^3-4x^2-2x^2+8x+3x-12\)
\(=x^3-6x^2+11x-12\)
Bài 2.
Áp dụng hằng đẳng thức (số 1 và số 2)
VD: \(892^2+892.216+108^2\)
\(=892^2+2.892.108+108^2\)
\(=\left(892+108\right)^2\)
\(=1000^2=1000000\)
Bài 3: Chủ yếu áp dụng hằng đẳng thức và phương pháp đặt nhân tử.
VD: Câu a)
\(7x^2-28=0\)
\(\Leftrightarrow7\left(x^2-4\right)=0\)
\(\Leftrightarrow x^2-4=0\left(7\ne0\right)\)
\(\Leftrightarrow\left(x-2\right)\left(x+2\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x+2=0\\x-2=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-2\\x=2\end{matrix}\right.\)
Bài 4: Áp dụng hằng đẳng thức
\(M=\left(x+3\right)\left(x^2-3x+9\right)-\left(x^3+54-x\right)\)
\(\Leftrightarrow M=x^3+27-\left(x^3+54-x\right)\)
\(\Leftrightarrow M=x^3+27-x^3-54+x\)
\(\Leftrightarrow M=-27+x\)
Thay \(x=27\)
\(\Leftrightarrow M=-27+27=0\)
Vậy ...
a)
\(3x^2-5x=0\Leftrightarrow x(3x-5)=0\)
\(\Rightarrow \left[\begin{matrix} x=0\\ 3x-5=0\rightarrow x=\frac{5}{3}\end{matrix}\right.\)
b)
\(x^3-0,36x=0\Leftrightarrow x(x^2-0,36)=0\)
\(\Leftrightarrow x(x-0,6)(x+0,6)=0\)
\(\Rightarrow \left[\begin{matrix} x=0\\ x-0,6=0\\ x+0,6=0\end{matrix}\right.\Rightarrow \left[\begin{matrix} x=0\\ x=0,6\\ x=-0,6\end{matrix}\right.\)
c)
\((5x+2)^2-(3x-1)^2=0\)
\(\Leftrightarrow (5x+2-3x+1)(5x+2+3x-1)=0\)
\(\Leftrightarrow (2x+3)(8x+1)=0\)
\(\Rightarrow \left[\begin{matrix} 2x+3=0\\ 8x+1=0\end{matrix}\right.\Rightarrow \left[\begin{matrix} x=\frac{-3}{2}\\ x=\frac{-1}{8}\end{matrix}\right.\)
d)
\(x^2-10x=-25\)
\(\Leftrightarrow x^2-10x+25=0\)
\(\Leftrightarrow x^2-2.5x+5^2=0\Leftrightarrow (x-5)^2=0\)
\(\Rightarrow x=5\)
e)
\(3(x+5)-x^2-5x=0\)
\(\Leftrightarrow 3(x+5)-x(x+5)=0\)
\(\Leftrightarrow (3-x)(x+5)=0\)
\(\Rightarrow \left[\begin{matrix} 3-x=0\rightarrow x=3\\ x+5=0\rightarrow x=-5\end{matrix}\right.\)
f)
\((x-1)^2-2(x-1)(3x+2)+(3x+2)^2=0\)
\(\Leftrightarrow [(x-1)-(3x+2)]^2=0\)
\(\Leftrightarrow (-2x-3)^2=0\Rightarrow -2x-3=0\Rightarrow x=\frac{-3}{2}\)