Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1:
a) (3x-2).(4x+5)-6x.(2x-1) = 12x^2 +15x - 8x -10 - 12x^2 + 6x = 13x - 10
b) (2x-5)^2 - 4.(x+3).(x-3) = 4x^2 - 20x + 25 - 4x^2 + 12x -12x + 36 = -20x + 61
Bài 2:
a)(2x-1)^2-(x+3)^2 = 0
<=> (2x-1-x-3).(2x-1+x+3) =0
<=>(x-4).(3x+2) = 0
<=> x-4 = 0 hoặc 3x+2=0
*x-4=0 => x=4
*3x+2 = 0 => 3x=-2 => x=-2/3
b)x^2(x-3)+12-4x=0 <=> x^2(x-3) - 4(x-3) =0 <=> (x-3).(x-2)(x+2) <=> x-3=0 hoặc x-2=0 hoặc x+2 =0
*x-3=0 => x=3
*x-2=0 =>x=2
*x+2=0 =>x=-2
c) 6x^3 -24x =0 <=> 6x(x^2 -4)=0 <=> 6x(x-2)(x+2)=0 <=> x=0 hoặc x-2 =0 hoặc x+2=0 <=> x=0 hoặc x=2 hoặc x=-2
a, 5x(x-2000)-x+2000=0
<=>5x(x-2000)-(x-2000)=0
<=>(5x-1)(x-2000)=0
<=>5x-1=0 hoặc x-2000=0
<=>x=1/5 hoặc x=2000
b, x3-13x=0
<=>x(x2-13)=0
<=>x=0 hoặc x2-13=0
<=>x=0 hoặc x=\(\sqrt{13}\) hoặc x=\(-\sqrt{13}\)
a,5x(x-2000)-x+2000=0
=>5x(x-2000)-(x-2000)=0
=>(5x-1)(x-2000)=0
=>x-2000=0 hoặc 5x-1=0
=>x=2000 hoặc x=1/5
vậy x=1/5;2000
b,x3-13x=0
=>(x2-13)x=0
=>x2-13=0 hoặc x=0
=>x=0 hoặc x=\(\sqrt{13}\)
vậy x=0;\(\sqrt{13}\)
\(b,\left(x-1\right)^2-1+x^2=\left(1-x\right)\left(x+3\right)\)
\(x^2-2x+1-1+x^2=x+3-x^2-3x\)
\(2x^2-2x=x+3-x^2-3x\)
\(2x^2-2x=-2x+3-x^2\)
\(2x^2=3-x^2\)
\(2x^2+x^2=3\)
\(3x^2=3\Leftrightarrow x^2=1\Leftrightarrow x=\pm\sqrt{1}\)
tớ n g u nên cần tg suy nghĩ thêm :v
câu a tìm ra r nè , vất vả :v ( kiên trì lắm đấy )
\(a,\left(9x^2-4\right)\left(x+1\right)=\left(3x+2\right)\left(x^2+1\right)\)
\(9x^3+9x^2-4x-4-3x^2-3x-2x^2-2=0\)
\(6x^3+7x^2-7x-6=0\)
\(\left(6x^2+13x+6\right)\left(x-1\right)=0\)
\(Th1:6x^2+9x+4x+6=0\)
\(\Leftrightarrow\left[3x\left(2x+3\right)+2\left(2x+3\right)\right]=0\)
\(\Leftrightarrow\left(2x+3\right)\left(3x+2\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}2x+3=0\\3x+2=0\end{cases}\Rightarrow\orbr{\begin{cases}2x=-3\\3x=-2\end{cases}}\Rightarrow\orbr{\begin{cases}x=-\frac{3}{2}\\x=-\frac{2}{3}\end{cases}}}\)
\(Th2:x-1=0\Leftrightarrow x=1\)
1) \(2\left(x+2\right)-\left(3x+1\right)\left(x+2\right)=0\)
\(\left(x+2\right)\left(2-3x-1\right)=0\)
\(\left(x+2\right)\left(1-3x\right)=0\)
\(\Rightarrow\orbr{\begin{cases}x+2=0\\1-3x=0\end{cases}\Rightarrow\orbr{\begin{cases}x=-2\\x=\frac{1}{3}\end{cases}}}\)
2) \(3x\left(x-3\right)-\left(2x-6\right)=0\)
\(3x\left(x-3\right)-2\left(x-3\right)=0\)
\(\left(x-3\right)\left(3x-2\right)=0\)
\(\Rightarrow\orbr{\begin{cases}x-3=0\\3x-2=0\end{cases}\Rightarrow\orbr{\begin{cases}x=3\\x=\frac{2}{3}\end{cases}}}\)
3) \(\left(2x-1\right)^2=\left(3x-5\right)^2\)
\(\left(2x-1\right)^2-\left(3x-5\right)^2=0\)
\(\left(2x-1-3x+5\right)\left(2x-1+3x-5\right)=0\)
\(\left(4-x\right)\left(5x-6\right)=0\)
\(\Rightarrow\orbr{\begin{cases}4-x=0\\5x-6=0\end{cases}\Rightarrow\orbr{\begin{cases}x=4\\x=\frac{6}{5}\end{cases}}}\)
4) \(\left(4x+3\right)\left(x-1\right)=x^2-1\)
\(\left(4x+3\right)\left(x-1\right)=\left(x+1\right)\left(x-1\right)\)
\(\left(4x+3\right)\left(x-1\right)-\left(x+1\right)\left(x-1\right)=0\)
\(\left(x-1\right)\left(4x+3-x-1\right)=0\)
\(\left(x-1\right)\left(3x+2\right)=0\)
\(\Rightarrow\orbr{\begin{cases}x-1=0\\3x+2=0\end{cases}\Rightarrow\orbr{\begin{cases}x=1\\x=\frac{-2}{3}\end{cases}}}\)
5) \(6-4x-\left(2x-3\right)\left(x-3\right)=0\)
\(-2\left(2x-3\right)-\left(2x-3\right)\left(x-3\right)=0\)
\(\left(2x-3\right)\left(-2-x+3\right)=0\)
\(\left(2x-3\right)\left(1-x\right)=0\)
\(\Rightarrow\orbr{\begin{cases}2x-3=0\\1-x=0\end{cases}\Rightarrow\orbr{\begin{cases}x=\frac{3}{2}\\x=1\end{cases}}}\)
6) \(2x^2-5x-7=0\)
\(2x^2+2x-7x-7=0\)
\(2x\left(x+1\right)-7\left(x+1\right)=0\)
\(\left(x+1\right)\left(2x-7\right)=0\)
\(\Rightarrow\orbr{\begin{cases}x+1=0\\2x-7=0\end{cases}\Rightarrow\orbr{\begin{cases}x=-1\\x=\frac{7}{2}\end{cases}}}\)
7) \(x^2-x-12=0\)
\(x^2+3x-4x-12=0\)
\(x\left(x+3\right)-4\left(x+3\right)\)
\(\left(x+3\right)\left(x-4\right)=0\)
\(\Rightarrow\orbr{\begin{cases}x+3=0\\x-4=0\end{cases}\Rightarrow\orbr{\begin{cases}x=-3\\x=4\end{cases}}}\)
8) \(3x^2+14x-5=0\)
\(3x^2+15x-x-5=0\)
\(3x\left(x+5\right)-\left(x+5\right)=0\)
\(\left(x+5\right)\left(3x-1\right)=0\)
\(\Rightarrow\orbr{\begin{cases}x+5=0\\3x-1=0\end{cases}\Rightarrow\orbr{\begin{cases}x=-5\\x=\frac{1}{3}\end{cases}}}\)
1,\(\left(x-3\right)^3-5\left(x-2\right)+5=0\)
\(\Rightarrow\left(x-3\right)^3-5\left(x-3\right)=0\)
\(\Rightarrow\left(x-3\right)\left[\left(x-3\right)^2-5\right]=0\)
\(\Rightarrow\orbr{\begin{cases}x-3=0\\\left(x-3\right)^2-5=0\end{cases}}\)
\(\Rightarrow x=3\) hoặc \(x=\sqrt{5}+3\) hoặc \(x=-\sqrt{5}+3\)
Vậy........
a) Đặt tính đa thức chia đa thức ta được:
\(f\left(x\right):g\left(x\right)=\left(x^2+x\right)\).
b) Thương f(x) : g(x) =0
<=> \(x^2+x=0\)
<=> x ( x + 1 ) = 0
<=> x =0 hoặc x+1 =0
<=> x=0 hoặc x=-1.
c)
Ta có: \(f\left(x\right):g\left(x\right)=\left(x^2+x\right)=x^2+2.x.\frac{1}{2}+\frac{1}{4}-\frac{1}{4}=\left(x+\frac{1}{2}\right)^2-\frac{1}{4}\ge-\frac{1}{4}\).
Gía trị nhỏ nhất là -1/4 đạt tại x = -1/2.
( Cảm ơn em đã giúp đỡ các bạn khác :)
\(x^2-x-1=0\)
\(\Leftrightarrow\left(x^2-2\cdot\frac{1}{2}\cdot x+\frac{1}{4}\right)-\frac{5}{4}=0\)
\(\Leftrightarrow\left(x-\frac{1}{2}\right)^2-\frac{5}{4}=0\)
\(\Leftrightarrow\left(x-\frac{1}{2}\right)^2=\frac{5}{4}\)
\(\Leftrightarrow x=\frac{\sqrt{5}}{2}+\frac{1}{2};x=\frac{-\sqrt{5}}{2}+\frac{1}{2}\)
\(x^2-2x-1=0\)
\(\Leftrightarrow\left(x^2-2x+1\right)-2=0\)
\(\Leftrightarrow\left(x-1\right)^2-2=0\)
\(\Leftrightarrow\left(x-1\right)^2=2\)
\(\Leftrightarrow x=\sqrt{2}+1;x=-\sqrt{2}+1\)
\(x^2-81=0\)
\(\Rightarrow\left(x+9\right)\left(x-9\right)=0\)
\(\Rightarrow\orbr{\begin{cases}x+9=0\\x-9=0\end{cases}\Rightarrow\orbr{\begin{cases}x=-9\\x=9\end{cases}}}\)
vậy...
\(6x-x^2-9=0\)
\(\Rightarrow-\left(x^2-6x+9\right)=0\)
\(\Rightarrow\left(x-3\right)^2=0\)
\(\Rightarrow x=3\)
x^2-4x+3=0
=> x=3 hoặc x=1