Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(a,\left(x+4\right)^2-x\left(x-5\right)=19\)
\(x^2+8x+16-x^2+5x=19\)
\(8x+5x=19-16\)
\(13x=3\)
\(x=\frac{3}{13}\)
\(b,x^2+3x-10=0\)
\(\Rightarrow x^2+5x-2x-10=0\)
\(\Rightarrow x\left(x+5\right)-2\left(x+5\right)=0\)
\(\Rightarrow\left(x-2\right)\left(x+5\right)=0\)
\(\Rightarrow\orbr{\begin{cases}x-2=0\\x+5=0\end{cases}\Rightarrow\orbr{\begin{cases}x=2\\x=-5\end{cases}}}\)
những bài này chủ yếu là biến đổi rồi phân tích thành nhân tử thôi
a) Ta có: \(\left(x-1\right)\left(3x-6\right)=0\)
\(\Leftrightarrow\left(x-1\right)\cdot3\cdot\left(x-2\right)=0\)
Vì 3≠0
nên \(\left[{}\begin{matrix}x-1=0\\x-2=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=1\\x=2\end{matrix}\right.\)
Vậy: x∈{1;2}
b) Ta có: \(\left(2x+5\right)\left(1-3x\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}2x+5=0\\1-3x=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}2x=-5\\3x=1\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\frac{-5}{2}\\x=\frac{1}{3}\end{matrix}\right.\)
Vậy: \(x\in\left\{\frac{-5}{2};\frac{1}{3}\right\}\)
c) Ta có: \(\left(x+1\right)\left(2x-3\right)\left(3x-5\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x+1=0\\2x-3=0\\3x-5=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-1\\2x=3\\3x=5\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-1\\x=\frac{3}{2}\\x=\frac{5}{3}\end{matrix}\right.\)
Vậy: \(x\in\left\{-1;\frac{3}{2};\frac{5}{3}\right\}\)
d) Ta có: \(6\left(x-2\right)\left(x-4\right)\left(1-7x\right)=0\)
Vì 6≠0
nên \(\left[{}\begin{matrix}x-2=0\\x-4=0\\1-7x=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=2\\x=4\\7x=1\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=2\\x=4\\x=\frac{1}{7}\end{matrix}\right.\)
Vậy: \(x\in\left\{2;4;\frac{1}{7}\right\}\)
e) Ta có: \(\left(x+1\right)^2\cdot\left(x+2\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}\left(x+1\right)^2=0\\x+2=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x+1=0\\x=-2\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-1\\x=-2\end{matrix}\right.\)
Vậy: x∈{-1;-2}
f) Ta có: \(\left(3x-2\right)^2\cdot\left(x+1\right)\cdot\left(x-2\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}\left(3x-2\right)^2=0\\x+1=0\\x-2=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}3x-2=0\\x=-1\\x=2\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}3x=2\\x=-1\\x=2\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\frac{2}{3}\\x=-1\\x=2\end{matrix}\right.\)
Vậy: \(x\in\left\{\frac{2}{3};-1;2\right\}\)
g) Ta có: \(\left(5-x\right)^2\left(3x-1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}\left(5-x\right)^2=0\\3x-1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}5-x=0\\3x=1\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=5\\x=\frac{1}{3}\end{matrix}\right.\)
Vậy: \(x\in\left\{5;\frac{1}{3}\right\}\)
h) Ta có: \(\left(14-2x\right)^2\cdot\left(3-x\right)\cdot\left(2x-4\right)=0\)
\(\Leftrightarrow4\left(7-x\right)^2\cdot\left(3-x\right)\cdot2\cdot\left(x-2\right)=0\)
\(\Leftrightarrow8\cdot\left(7-x\right)^2\cdot\left(3-x\right)\cdot\left(x-2\right)=0\)
Vì 8≠0
nên \(\left[{}\begin{matrix}\left(7-x\right)^2=0\\3-x=0\\x-2=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}7-x=0\\x=3\\x=2\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=7\\x=3\\x=2\end{matrix}\right.\)
Vậy: x∈{7;3;2}
i) Ta có: \(\left(5x-6\right)^2\cdot\left(x+2\right)\cdot\left(x+10\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}\left(5x-6\right)^2=0\\x+2=0\\x+10=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}5x-6=0\\x=-2\\x=-10\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}5x=6\\x=-2\\x=-10\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\frac{6}{5}\\x=-2\\x=-10\end{matrix}\right.\)
Vậy: \(x\in\left\{\frac{6}{5};-2;-10\right\}\)
j) Ta có: \(\left(3x-3\right)^3\cdot\left(x+4\right)=0\)
\(\Leftrightarrow27\cdot\left(x-1\right)^3\cdot\left(x+4\right)=0\)
Vì 27≠0
nên \(\left[{}\begin{matrix}\left(x-1\right)^3=0\\x+4=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x-1=0\\x=-4\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=1\\x=-4\end{matrix}\right.\)
Vậy: x∈{1;-4}
a/ (x+5)(3x+2)^2=x^2(x+5)
(x+5)(9x^2+12x+4)=x^2(x+5)
9x^3+12x^2+4x+45x^2+60x+20=x^3+5x^2
9x^3-x^3+12x^2+45x^2-5x^2+4x+60x=-20
8x^3+52x^2+64x+20=0
........................
Bạn đưa quá nhiều bài 1 lúc nên người ta giải được cũng chẳng ai muốn giải đâu, vì nhìn vào đã thấy ngộp rồi. Kinh nghiệm là muốn được giải quyết nhanh thì chỉ đăng 2-3 bài 1 lúc thôi
Bài 1:
a/ \(11-\left(2x+3\right)=3\left(x-4\right)\)
\(\Leftrightarrow11-2x-3=3x-12\)
\(\Leftrightarrow5x=20\)
\(\Rightarrow x=4\)
b/ \(5\left(2x-3\right)-4\left(5x-7\right)=19-2x\)
\(\Leftrightarrow10x-15-20x+28=19-2x\)
\(\Leftrightarrow8x=-6\)
\(\Rightarrow x=-\frac{3}{4}\)
c/
\(\frac{x}{3}-\frac{2x+1}{2}=\frac{x}{6}-x\)
\(\Leftrightarrow2x-3\left(2x+1\right)=x-6x\)
\(\Leftrightarrow x=3\)
d/
\(\frac{5x+2}{6}-\frac{8x-1}{3}=\frac{4x+2}{5}-5\)
\(\Leftrightarrow5\left(5x+2\right)-10\left(8x-1\right)=6\left(4x+2\right)-150\)
\(\Leftrightarrow79x=158\)
\(\Rightarrow x=2\)
e/
\(\frac{2-6x}{5}-\frac{2+3x}{10}=7-\frac{6x+3}{4}\)
\(\Leftrightarrow4\left(2-6x\right)-2\left(2+3x\right)=140-5\left(6x+3\right)\)
\(\Leftrightarrow0=-121\) (vô lý)
Vậy pt vô nghiệm
f/
\(\frac{3x+2}{2}-\frac{3x+1}{6}=2x+\frac{5}{3}\)
\(\Leftrightarrow3\left(3x+2\right)-\left(3x+1\right)=12x+10\)
\(\Leftrightarrow6x=-5\)
\(\Rightarrow x=-\frac{5}{6}\)
a.(x+2)2-x(x+2)=0
\(\Leftrightarrow\)(x+2)(x-2-x)=0
\(\Leftrightarrow\)(x+2)*2=0
\(\Leftrightarrow\)x+2=0
\(\Leftrightarrow\)x=-2
vay s={-2}
b.\(\frac{2x+7}{3}\)-\(\frac{x-2}{4}\)=2
\(\Leftrightarrow\)\(\frac{4\left(2x+7\right)}{12}\)+\(\frac{-3\left(x-2\right)}{12}\)=\(\frac{24}{12}\)
\(\Leftrightarrow\)8x+28-3x+6=24
\(\Leftrightarrow\)5x=-10
\(\Leftrightarrow\)x=-2
vay s={-2}
c.|x+5|=3x+1
neu x+5\(\ge\)0 thi |x+5|=x+5
\(\Leftrightarrow\)x\(\ge\)-5
ta co phuong trinh
x+5=3x+1
\(\Leftrightarrow\)-2x=-4
\(\Leftrightarrow\)x=2( thoa man dieu kien x\(\ge\)-5)
neu x+5<0 thi |x+5|=5-x
\(\Leftrightarrow\)x<-5
ta co phuong trinh
5-x=3x+1
\(\Leftrightarrow\)-4x=-4
\(\Leftrightarrow\)x=1 (k thoa man dieu kien x<5)
vay s={2}
chuc bn hoc tot
a) Ta có: \(x^2-3x+2=0\)
\(\Leftrightarrow x^2-x-2x+2=0\)
\(\Leftrightarrow\left(x^2-x\right)-\left(2x-2\right)=0\)
\(\Leftrightarrow x\left(x-1\right)-2\left(x-1\right)=0\)
\(\Leftrightarrow\left(x-1\right)\left(x-2\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x-1=0\\x-2=0\end{matrix}\right.\)\(\Leftrightarrow\left[{}\begin{matrix}x=1\\x=2\end{matrix}\right.\)
Vậy: \(x\in\left\{1;2\right\}\)
b) Ta có: \(-x^2+5x-6=0\)
\(\Leftrightarrow-\left(x^2-5x+6\right)=0\)
\(\Leftrightarrow-\left(x^2-2x-3x+6\right)=0\)
\(\Leftrightarrow-\left[\left(x^2-2x\right)-\left(3x-6\right)\right]=0\)
\(\Leftrightarrow-\left[x\left(x-2\right)-3\left(x-2\right)\right]=0\)
\(\Leftrightarrow-\left[\left(x-2\right)\left(x-3\right)\right]=0\)
\(\Leftrightarrow-\left(x-2\right)\left(x-3\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x-2=0\\x-3=0\end{matrix}\right.\)\(\Leftrightarrow\left[{}\begin{matrix}x=2\\x=3\end{matrix}\right.\)
Vậy: x∈{2;3}
c) Ta có: \(4x^2-12x+5=0\)
\(\Leftrightarrow4x^2-10x-2x+5=0\)
⇔(4x2-10x)-(2x-5)=0
\(\Leftrightarrow2x\left(2x-5\right)-\left(2x-5\right)=0\)
\(\Leftrightarrow\left(2x-5\right)\left(2x-1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}2x-5=0\\2x-1=0\end{matrix}\right.\)\(\Leftrightarrow\left[{}\begin{matrix}2x=5\\2x=1\end{matrix}\right.\)\(\Leftrightarrow\left[{}\begin{matrix}x=\frac{5}{2}\\x=\frac{1}{2}\end{matrix}\right.\)
Vậy: \(x\in\left\{\frac{1}{2};\frac{5}{2}\right\}\)
d) Ta có: \(2x^2+5x+3=0\)
\(\Leftrightarrow2x^2+2x+3x+3=0\)
\(\Leftrightarrow\left(2x^2+2x\right)+\left(3x+3\right)=0\)
\(\Leftrightarrow2x\left(x+1\right)+3\left(x+1\right)=0\)
\(\Leftrightarrow\left(x+1\right)\left(2x+3\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x+1=0\\2x+3=0\end{matrix}\right.\)\(\Leftrightarrow\left[{}\begin{matrix}x=-1\\2x=-3\end{matrix}\right.\)\(\Leftrightarrow\left[{}\begin{matrix}x=-1\\x=-\frac{3}{2}\end{matrix}\right.\)
Vậy: \(x\in\left\{-1;\frac{-3}{2}\right\}\)
e) Ta có: \(x^3+2x^2-x-2=0\)
\(\Leftrightarrow\left(x^3+2x^2\right)-\left(x+2\right)=0\)
\(\Leftrightarrow x^2\left(x+2\right)-\left(x+2\right)=0\)
\(\Leftrightarrow\left(x+2\right)\left(x^2-1\right)=0\)
\(\Leftrightarrow\left(x+2\right)\left(x-1\right)\left(x+1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x+2=0\\x-1=0\\x+1=0\end{matrix}\right.\)\(\Leftrightarrow\left[{}\begin{matrix}x=-2\\x=1\\x=-1\end{matrix}\right.\)
Vậy: \(x\in\left\{-2;1;-1\right\}\)
g) Ta có: \(\left(3x-1\right)^2-5\left(2x+1\right)^2+\left(6x-3\right)\left(2x+1\right)=\left(x-1\right)^2\)
\(\Leftrightarrow9x^2-6x+1-20x^2-20x-5+12x^2-3-x^2+2x-1=0\)
\(\Leftrightarrow-24x-8=0\)
\(\Leftrightarrow-8\left(3x+1\right)=0\)
⇔3x+1=0
\(\Leftrightarrow3x=-1\)
\(\Leftrightarrow x=-\frac{1}{3}\)
Vậy: \(x=-\frac{1}{3}\)
h) \(2x^3-7x^2+7x-2=0\)
\(\Leftrightarrow2x^3-4x^2-3x^2+6x+x-2=0\)
\(\Leftrightarrow2x^2\left(x-2\right)-3x\left(x-2\right)+\left(x-2\right)=0\)
\(\Leftrightarrow\left(x-2\right)\left(2x^2-3x+1\right)=0\)
\(\Leftrightarrow\left(x-2\right)\left(2x^2-2x-x+1\right)=0\)
\(\Leftrightarrow\left(x-2\right)\left[2x\left(x-1\right)-\left(x-1\right)\right]=0\)
\(\Leftrightarrow\left(x-2\right)\left(x-1\right)\left(2x-1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x-2=0\\x-1=0\\2x-1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=2\\x=1\\x=\frac{1}{2}\end{matrix}\right.\)
Vậy S = {2; 1; \(\frac{1}{2}\)}
i) \(x^4+2x^3+5x^2+4x-12=0\)
\(\Leftrightarrow x^4-x^3+3x^3-3x^2+8x^2-8x+12x-12=0\)
\(\Leftrightarrow x^3\left(x-1\right)+3x^2\left(x-1\right)+8x\left(x-1\right)+12\left(x-1\right)=0\)
\(\Leftrightarrow\left(x-1\right)\left(x^3+3x^2+8x+12\right)=0\)
\(\Leftrightarrow\left(x-1\right)\left(x^3+2x^2+x^2+2x+6x+12\right)=0\)
\(\Leftrightarrow\left(x-1\right)\left[x^2\left(x+2\right)+x\left(x+2\right)+6\left(x+2\right)\right]=0\)
\(\Leftrightarrow\left(x-1\right)\left(x+2\right)\left(x^2+x+6\right)=0\)
\(\Leftrightarrow\left(x-1\right)\left(x+2\right)\left[\left(x+\frac{1}{2}\right)^2+\frac{23}{4}\right]=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x-1=0\\x+2=0\\\left(x+\frac{1}{2}\right)^2+\frac{23}{4}=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=1\\x=-2\\\left(x+\frac{1}{2}\right)^2=\frac{-23}{4}\left(loai\right)\end{matrix}\right.\)
Vậy S = {1;-2}
a, 5x(x-2) + (2-x)=0
⇔5x(x-2) - (x-2) =0
⇔(x-2)(5x-1)=0
\(\left[{}\begin{matrix}x-2=0\\5x-1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=2\\x=\frac{1}{5}\end{matrix}\right.\)
Vậy....
c, (x3 - x2) - 4x2 + 8x -4 =0
⇔x3 - x2 -4x2 + 8x - 4=0
⇔x2(x-1) - 4x(x-1) +4(x-1) =0
⇔(x-1) (x-2)2=0
⇔\(\left[{}\begin{matrix}x-1=0\\\left(x-2\right)^2=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=1\\x=2\end{matrix}\right.\)
Vậy...
Phần b cậu có chép sai đề không?
\(a,\left(x+4\right)^2-x\left(x-5\right)=19\)
\(x^2+8x+16-x^2+5x=19\)
\(8x+5x=19-16\)
\(13x=3\)
\(x=\frac{3}{13}\)
\(b,x^2+3x-10=0\)
\(\Rightarrow x^2+5x-2x-10=0\)
\(\Rightarrow x\left(x+5\right)-2\left(x+5\right)=0\)
\(\Rightarrow\left(x-2\right)\left(x+5\right)=0\)
\(\Rightarrow\orbr{\begin{cases}x-2=0\\x+5=0\end{cases}\Rightarrow\orbr{\begin{cases}x=2\\x=-5\end{cases}}}\)
a) (x+4)2 - x(x-5) = 19
x2+2.x.4+42 - x2 +5x = 19
8x +16 +5x =19
13x +16 =19
13x = 19-16=3
=> x=3:13=\(\frac{3}{13}\)
b) x2 +3x -10 =0
x(x+3) -10 =0
x(x+3) =10
=> x=2
chúc bn học tốt nha ^^ t chi mk nhé <3