Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1)
a) \(x^3-5x^2+x-5=0\Rightarrow x^2.\left(x-5\right)+\left(x-5\right)\)
\(\Rightarrow\left(x^2+1\right).\left(x-5\right)=0\Rightarrow\orbr{\begin{cases}x^2+1=0\\x-5=0\end{cases}\Rightarrow}\orbr{\begin{cases}x^2=-1\left(sai\right)\\x=5\end{cases}}\)\(KL:x=5\)
b) \(x^4-2x^3+10x^2-20x=0\Rightarrow x^3.\left(x-2\right)+10x\left(x-2\right)\)
\(\Rightarrow\left(x-2\right).\left(x^3+10x\right)\Rightarrow\orbr{\begin{cases}x-2=0\\x^3+10x=0\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}x=2\\x\left(x^2+10\right)=0\Rightarrow x=0\end{cases}}\)
Vì nếu x2 + 10 = 0 => x2 = -10 ( sai )
Vậy...
\(a,x^3-16x=0\)
\(\Leftrightarrow x\left(x^2-16\right)=0\)
\(\Leftrightarrow x\left(x-4\right)\left(x+4\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x-4=0\\x+4=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=0\\x=4\\x=-4\end{matrix}\right.\)
\(b,x^4-2x^3+10x^2-20x=0\)
\(\Leftrightarrow x^3\left(x-2\right)+10x\left(x-2\right)=0\)
\(\Leftrightarrow\left(x-2\right)\left(x^3+10x\right)=0\)
\(\Leftrightarrow\left(x-2\right)x\left(x^2+10\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x-2=0\\x=0\\x^2+10=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=2\\x=0\\\left[{}\begin{matrix}x^2=10\\x^2=-10\end{matrix}\right.\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=2\\x=0\\x=\sqrt{10}\\x=-\sqrt{10}\end{matrix}\right.\)\(c,\left(2x-1\right)^2=\left(x+3\right)^2\)
\(\Leftrightarrow4x^2-4x+1=x^2+6x+9\)
\(\Leftrightarrow4x^2-4x+1-x^2-6x-9=0\)
\(\Leftrightarrow3x^2-10x-8=0\)
\(\Leftrightarrow3x^2-12x+2x-8=0\)
\(\Leftrightarrow3x\left(x-4\right)+2\left(x-4\right)=0\)
\(\Leftrightarrow\left(3x-2\right)\left(x-4\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}3x-2=0\\x-4=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=-\dfrac{2}{3}\\x=4\end{matrix}\right.\)
Phần d tương tự
Câu a :
\(x^3-16x=0\)
\(\Leftrightarrow x\left(x^2-4^2\right)=0\)
\(\Leftrightarrow x\left[\left(x+4\right)\left(x-4\right)\right]=0\)
\(\Rightarrow\) \(x=0\)
\(\Rightarrow\) \(x+4=0\Rightarrow x=-4\)
\(\Rightarrow x-4=0\Rightarrow x=4\)
Câu b :
\(x^4-2x^3+10x^2-20x=0\)
\(\Leftrightarrow x^3\left(x-2\right)+10x\left(x-2\right)\) \(=0\)
\(\Leftrightarrow\left(x-2\right)\left(x^3+10x\right)=0\)
\(\Leftrightarrow x\left(x-2\right)\left(x^2+10\right)=0\)
\(\Rightarrow x=0\)
\(\left(x-2\right)=0\Rightarrow x=2\)
\(x^2+10=0\) \(\Rightarrow\) x ( loại )
a)\(6x^2+5x-6=0\)
\(\Leftrightarrow6x^2-4x+9x-6=0\)
\(\Leftrightarrow2x\left(3x-2\right)+3\left(3x-2\right)=0\)
\(\Leftrightarrow\left(2x+3\right)\left(3x-2\right)=0\)
\(\Leftrightarrow\left[\begin{array}{nghiempt}2x+3=0\\3x-2=0\end{array}\right.\)\(\Leftrightarrow\left[\begin{array}{nghiempt}x=-\frac{3}{2}\\x=\frac{2}{3}\end{array}\right.\)
b)\(6x^2-13x+6=0\)
\(\Leftrightarrow6x^2-4x-9x+6=0\)
\(\Leftrightarrow2x\left(3x-2\right)-3\left(3x-2\right)=0\)
\(\Leftrightarrow\left(2x-3\right)\left(3x-2\right)=0\)
\(\Leftrightarrow\left[\begin{array}{nghiempt}2x-3=0\\3x-2=0\end{array}\right.\)\(\Leftrightarrow\left[\begin{array}{nghiempt}x=\frac{3}{2}\\x=\frac{2}{3}\end{array}\right.\)
c)\(10x^2-13x-3=0\)
\(\Leftrightarrow10x^2-15x+2x-3=0\)
\(\Leftrightarrow5x\left(2x-3\right)+\left(2x-3\right)=0\)
\(\Leftrightarrow\left(2x-3\right)\left(5x+1\right)=0\)
\(\Leftrightarrow\left[\begin{array}{nghiempt}2x-3=0\\5x+1=0\end{array}\right.\)\(\Leftrightarrow\left[\begin{array}{nghiempt}x=\frac{3}{2}\\x=-\frac{1}{5}\end{array}\right.\)
d)\(20x^2+19x-3=0\)
\(\Delta=19^2-\left(-4\left(20.3\right)\right)=601\)
\(\Rightarrow x_{1,2}=\frac{-19\pm\sqrt{601}}{40}\)
e)\(3x^2-x+6=0\)
\(\Delta=\left(-1\right)^2-4\left(3.6\right)=-71< 0\)
Suy ra vô nghiệm
Bài 1.
a) x2 + 7x +12 = 0
Ta có Δ = 72 - 4.12 = 1> 0 => \(\sqrt{\Delta}=\sqrt{1}=1\)
Phương trình có 2 nghiệm phân biệt:
x1 = \(\frac{-7+1}{2}=-3\)
x2= \(\frac{-7-1}{2}=-4\)
Bài 1
b) 2x2 + 5x - 3=0
Ta có: Δ = 52 + 4.2.3 = 49 > 0 => \(\sqrt{\Delta}=\sqrt{49}=7\)
Phương tình có 2 nghiệm phân biệt:
x1 = \(\frac{-5+7}{2.2}=\frac{1}{2}\)
x2 = \(\frac{-5-7}{2.2}-3\)
c) 3x2 +10x+7 = 0
Ta có: Δ = 102 - 4.3.7= 16> 0 => \(\sqrt{\Delta}=\sqrt{16}=4\)
Phương tình có 2 nghiệm phân biệt:
x1= \(\frac{-10+4}{2.3}=-1\)
x2= \(\frac{-10-4}{2.3}=-\frac{7}{3}\)
b, \(15\left(x+3\right)+20x\left(x+8\right)=15x+45+20x^2+160x\)
\(=20x^2+175x+45=...\)
c, \(6\left(x-9\right)-3x\left(y-x\right)=6x-54-3xy+3x^2\)
d, \(2xy+10x^2-x\) không phân tích được nữa nhé
e, \(4ab^2-28a+16b\)không phân tích được nữa nhé
g, \(a\left(a+b\right)=ab\left(a+b\right)< =>\left(a+b\right)\left(a-ab\right)=0< =>\left(a+b\right)a\left(1-b\right)=0\)
h, \(30a^2+6a-6=\left(\sqrt{30}a\right)^2+2.\sqrt{30}.\frac{3}{\sqrt{30}}+\frac{3}{10}-\frac{63}{10}\)
\(=\left(\sqrt{30}a+\frac{3}{\sqrt{30}}\right)^2-\sqrt{\frac{63}{10}}^2=\left(\sqrt{30}a+\frac{3}{\sqrt{30}}-\sqrt{\frac{63}{10}}\right)\left(\sqrt{30}a+\frac{3}{\sqrt{30}}+\sqrt{\frac{63}{10}}\right)\)
Bài1:
\(a,\left(2x+3\right)^2-\left(2x+1\right)\left(2x-1\right)=22\\ \Leftrightarrow\left(2x+3\right)^2-4x^2+1=22\\ \Leftrightarrow\left(2x+3-2x\right)\left(2x+3+2x\right)=21\\ \Leftrightarrow3\left(4x+3\right)=21\\ \Leftrightarrow4x+3=7\\ \Leftrightarrow4x=4\\ \Leftrightarrow x=1\\ Vậy....\\ b,\left(2x-1\right)^3-4x^2\left(2x-3\right)=5\\ \Leftrightarrow8x^3-12x^2+6x-1-8x^3+12x^2=5\\ \Leftrightarrow6x=6\\ \Leftrightarrow x=1\\ Vậy...\)
Các câu sau cũng như thế
Bài2:
\(A=x^2+20x+9\\ =\left(x^2+20x+100\right)-91\\ =\left(x+10\right)^2-91\)
Với mọi x thì \(\left(x+10\right)^2\ge0\\ \Rightarrow\left(x+10\right)^2-91\ge-91\)
Hay \(A\ge-91\)
Để A=-91 thì
\(\left(x+10\right)^2=0\\ \Leftrightarrow x+10=0\\ \Leftrightarrow x=-10\)
Vậy...
\(B=4x^2+5x+7\\ =\left(4x^2+5x+\dfrac{25}{16}\right)+5,4375\\ =\left(2x+\dfrac{5}{4}\right)^2+5,4375\)
Với mọi x;y thì \(\left(2x+\dfrac{5}{4}\right)^2+5,4375\ge5,4375\)
Hay \(A\ge5,4375\)
Để \(A=5,4375\) thì \(\left(2x+\dfrac{5}{4}\right)^2=0\\ \Leftrightarrow2x+\dfrac{5}{4}=0\\ \Leftrightarrow x=\dfrac{-5}{8}\)
Vậy....
a) \(x^2+10x=0\)
\(x\left(x+10\right)=0\)
\(\left[{}\begin{matrix}x=0\\x=-10\end{matrix}\right.\)
b) \(\left(x-7\right)^3=x-7\)
\(\left(x-7\right)^3-\left(x-7\right)=0\)
\(\left(x-7\right)\left[\left(x-7\right)^2-1\right]=0\)
\(\left(x-7\right)\left(x-7-1\right)\left(x-7+1\right)=0\)
\(\left(x-7\right)\left(x-8\right)\left(x-6\right)=0\)
\(\left[{}\begin{matrix}x=7\\x=8\\x=6\end{matrix}\right.\)
c) \(x^2-20x+100=0\)
\(x^2-10x-10x+100=0\)
\(x\left(x-10\right)-10\left(x-10\right)=0\)
\(\left(x-10\right)\left(x-10\right)=0\)
\(\left(x-10\right)^2=0\)
=> x = 10
a) \(x^2+10x=0\)
\(\Leftrightarrow x\left(x+10\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x=0\\x+10=0\end{matrix}\right.\)\(\Rightarrow\left[{}\begin{matrix}x=0\\x=-10\end{matrix}\right.\)
Vậy..
b) \(\left(x-7\right)^3=\left(x-7\right)\)
\(\Leftrightarrow\left(x-7\right)^3-\left(x-7\right)=0\)
\(\Leftrightarrow\left(x-7\right)\left[\left(x-7\right)^2-1\right]=0\)
\(\Leftrightarrow\left(x-7\right)\left(x-8\right)\left(x-6\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x-7=0\\x-8=0\\x-6=0\end{matrix}\right.\)\(\Rightarrow\left[{}\begin{matrix}x=7\\x=8\\x=6\end{matrix}\right.\)
Vậy..
c) \(x^2-20x+100=0\)
\(\Leftrightarrow\left(x-10\right)^2=0\)
\(\Rightarrow x-10=0\)
\(\Rightarrow x=10\)