\(2^x\le2^9.2^{-5}\) b) 27<\(81^3:3^x< 2...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 8 2018

Giải :

a,Ta có :

\(8=2^3\\ 2^9.2^{-5}=2^4\)

\(\Rightarrow2^3< 2^x< 2^4\)

\(\Rightarrow3< x< 4\left(x\in R\right)\)

b, Ta có :

\(27=3^3\\ 81^3:3^x=3^{12}:3^x=3^{12-x}\\ 243=3^5\)

\(\Rightarrow3^3< 3^{12-x}< 3^5\)

\(\Rightarrow3< 12-x< 5\)

\(\Rightarrow7< x< 9\left(x\in R\right)\)

a: Để y<2 thì \(0,5x^2< 2\)

=>x2<4

=>-2<x<4

b: Để y>2 thì 0,5x2>4

=>x2>4

=>x>2 hoặc x<-2

c: Để -2<y<2 thì \(x\in\left(-2;4\right)\cap\left(\left(-\infty;-2\right)\cup\left(2;+\infty\right)\right)=\left(2;4\right)\)

18 tháng 7 2016

khỏi cần

ta có \(A^2=2+2\sqrt{x\left(2-x\right)}\ge2\)

dấu = xảy ra khi x=4

18 tháng 7 2016

nhanh hơn nhìu nha

30 tháng 6 2019

a) \(\frac{\sqrt{x}-2}{\sqrt{x}+2}< 0\left(Đk:x\ge0\right)\Leftrightarrow\sqrt{x}-2< 0\Leftrightarrow\sqrt{x}< 2\Leftrightarrow x< 4\)

(\(\sqrt{x}+2>0\forall x\ge0\))

Vậy với \(0\le x< 4\)thì ...........

b) \(\frac{3}{\sqrt{x}-5}>0\left(Đk:x\ge0,x\ne25\right)\Leftrightarrow\sqrt{x}-5>0\Leftrightarrow\sqrt{x}>5\Leftrightarrow x>25\)

Vậy với x>25 thì ................

c)

\(\frac{\sqrt{x}-1}{\sqrt{x}-2}< 1\left(ĐK:x\ge0;x\ne4\right)\\ \Leftrightarrow\frac{\sqrt{x}-1}{\sqrt{x}-2}-1< 0\\ \Leftrightarrow\frac{\sqrt{x}-1-\sqrt{x}+2}{\sqrt{x}-2}< 0\\ \Leftrightarrow\frac{1}{\sqrt{x}-2}< 0\\ \Leftrightarrow\sqrt{x}-2< 0\Leftrightarrow x< 4\)

Vậy với \(0\le x< 4\)thì .................

Cái cuối để mk nghĩ đã =v=

30 tháng 6 2019

cám ơn ạ

15 tháng 8 2016

Bài 1:
a) Để A,B có nghĩa \(\Leftrightarrow\begin{cases}2x+3\ge0\\x-3>0\end{cases}\)\(\Leftrightarrow\begin{cases}x\ge-\frac{3}{2}\\x>3\end{cases}\)\(\Leftrightarrow x>3\)

b) Để A= B

\(\Leftrightarrow\sqrt{\frac{2x+3}{x-3}}=\frac{\sqrt{2x+3}}{\sqrt{x-3}}\)

\(\Leftrightarrow\sqrt{\frac{2x+3}{x-3}}-\sqrt{\frac{2x+3}{x-3}}=0\)

\(\Leftrightarrow0x=0\) (thỏa mãn với mọi x>3)

Vậy x>3 thì A=B

 

 

 

15 tháng 8 2016

a, ĐKXĐ A: \(\frac{2x+3}{x-3}\)\(\frac{2x+3}{x-3}\ge0\Rightarrow\left[\begin{array}{nghiempt}\hept{\begin{cases}2x+3\ge0\\x-3>0\end{array}\right.\\\hept{\begin{cases}2x-3\le0\\x-3< 0\end{array}\right.\end{cases}\Rightarrow\left[\begin{array}{nghiempt}\hept{\begin{cases}x\ge-\frac{3}{2}\\x>3\end{array}\right.\\\hept{\begin{cases}x\le-\frac{3}{2}\\x< 3\end{array}\right.\end{cases}\Rightarrow}\left[\begin{array}{nghiempt}x>-\frac{3}{2}\\x< 3\end{array}\right.}\)

ĐKXĐ B: \(\begin{cases}2x+3\ge0\\x-3>0\end{cases}\Rightarrow\begin{cases}x\ge-\frac{3}{3}\\x>3\end{cases}}\)