Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1) a) Ta có \(\left(x-2\right)^2\ge0\)
\(\left(y+3\right)^4\ge0\)
\(\left(z+4\right)^6\ge0\)
mà \(\left(x-2\right)^2+\left(y+3\right)^4+\left(z+4\right)^6=0\)
nên \(x-2=0\Rightarrow x=2\)
\(y+3=0\Rightarrow y=-3\)
\(z+4=0\Rightarrow z=-4\)
b) \(3x=2y\Rightarrow x=\frac{2y}{3}\)
\(\frac{y}{5}=\frac{z}{4}\Rightarrow z=\frac{4y}{5}\)
Do đó \(x+y+z=-3,9\)
hey \(\frac{2y}{3}+\frac{4y}{5}+y=-3,9\)
giải tìm ra y thế vào lại để tìm x,z
2)
a)
\(-\frac{5}{4}-\frac{-7}{12}+\frac{-2}{3}+\frac{5}{6}-\frac{3}{2}=-\frac{15}{12}+\frac{7}{12}-\frac{8}{12}+\frac{10}{12}-\frac{18}{12}=\frac{-15+7-8+10-18}{12}\)
\(=-\frac{24}{12}=-2\)
b) \(S=\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{100}}\)
\(\Rightarrow\frac{1}{2}S=\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{101}}\)
\(\Rightarrow S-\frac{1}{2}S=\frac{1}{2}-\frac{1}{2^{101}}\)
\(\frac{1}{2}S=\frac{2^{100}-1}{2^{101}}\)
\(S=\frac{2^{100}-1}{2^{100}}\)
Ta có : \(\left(x-2\right)^2\ge0\forall x\)
\(\left(y+3\right)^4\ge0\forall y\)
\(\left(z+4\right)^2\ge0\forall z\)
Mà : ( x - 2 )2 + ( y + 3 )4 + ( z + 4 )6 = 0
Nên : pt <=> x - 2 = 0
y + 3 = 0
z + 4 = 0
<=> x = 2
y = -3
z = -4
Bài 1: (1/2x - 5)20 + (y2 - 1/4)10 < 0 (1)
Ta có: (1/2x - 5)20 \(\ge\)0 \(\forall\)x
(y2 - 1/4)10 \(\ge\)0 \(\forall\)y
=> (1/2x - 5)20 + (y2 - 1/4)10 \(\ge\)0 \(\forall\)x;y
Theo (1) => ko có giá trị x;y t/m
Bài 2. (x - 7)x + 1 - (x - 7)x + 11 = 0
=> (x - 7)x + 1.[1 - (x - 7)10] = 0
=> \(\orbr{\begin{cases}\left(x-7\right)^{x+1}=0\\1-\left(x-7\right)^{10}=0\end{cases}}\)
=> \(\orbr{\begin{cases}x-7=0\\\left(x-7\right)^{10}=1\end{cases}}\)
=> x = 7
hoặc : \(\orbr{\begin{cases}x-7=1\\x-7=-1\end{cases}}\)
=> x = 7
hoặc : \(\orbr{\begin{cases}x=8\\x=6\end{cases}}\)
Bài 3a) Ta có: (2x + 1/3)4 \(\ge\)0 \(\forall\)x
=> (2x +1/3)4 - 1 \(\ge\)-1 \(\forall\)x
=> A \(\ge\)-1 \(\forall\)x
Dấu "=" xảy ra <=> 2x + 1/3 = 0 <=> 2x = -1/3 <=> x = -1/6
Vậy Min A = -1 tại x = -1/6
b) Ta có: -(4/9x - 2/5)6 \(\le\)0 \(\forall\)x
=> -(4/9x - 2/15)6 + 3 \(\le\)3 \(\forall\)x
=> B \(\le\)3 \(\forall\)x
Dấu "=" xảy ra <=> 4/9x - 2/15 = 0 <=> 4/9x = 2/15 <=> x = 3/10
vậy Max B = 3 tại x = 3/10
a) \(a^3+a^2b-a^2c-abc=a^2\left(a+b\right)-ac\left(a+b\right)=a\left(a+b\right)\left(a-c\right)\)
b) mk chỉnh lại đề
\(x^2+2xy+y^2-xz-yz=\left(x+y\right)^2-z\left(x+y\right)=\left(x+y\right)\left(x+y-z\right)\)
c) \(4-x^2-2xy-y^2=4-\left(x+y\right)^2=\left(2-x-y\right)\left(2+x+y\right)\)
d) \(x^2-2xy+y^2-z^2=\left(x-y\right)^2-z^2=\left(x-y-z\right)\left(x-y+z\right)\)
a) \(\left(x-\frac{1}{3}\right)^2-\frac{1}{4}=0\)
\(\Rightarrow\left(x-\frac{1}{3}\right)^2=0+\frac{1}{4}=\frac{1}{4}\)
\(\Rightarrow x-\frac{1}{3}=\sqrt{\frac{1}{4}}=\frac{1}{2}\)
\(\Rightarrow x=\frac{1}{2}+\frac{1}{3}=\frac{5}{6}\)
Nếu x = 0 => 2^0 + 624 = 5^y => 625 = 5^y => 5^4 = 5^y => y = 4
Nếu x > 0 => 2^x + 624 chẵn mà 5^y lẻ => không có x; y thoả mãn
Vậy x = 0; y = 4
a)
vì 5(x+2)(x+3)=1
=> 5(x+2)(x+3)=50
=> (x+2)(x+3)=0
\(\Rightarrow\left[{}\begin{matrix}x+2=0\Rightarrow x=-2\\x+3=0\Rightarrow x=-3\end{matrix}\right.\)
vậy \(x\in\left\{-2;-3\right\}\)
b)
ta có \(\left\{{}\begin{matrix}\left(x-4\right)^{100}\ge0\forall x\\\left|3-y\right|\ge0\forall y\end{matrix}\right.\)
mà (x-4)100+|3-y|=0
\(\Rightarrow\left\{{}\begin{matrix}x-4=0\Rightarrow x=4\\3-y=0\Rightarrow y=3\end{matrix}\right.\)
vậy (x;y) = (4;3)