Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
5a.
\(\dfrac{1}{1.3}+\dfrac{1}{3.5}+....+\dfrac{1}{19.21}\\ =\dfrac{1}{2}\left(\dfrac{1}{1}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{5}+....+\dfrac{1}{19}-\dfrac{1}{21}\right)\\ =\dfrac{1}{2}\left(1-\dfrac{1}{21}\right)\\ =\dfrac{1}{2}.\dfrac{20}{21}=\dfrac{10}{21}\)
b.
\(\dfrac{1}{1.3}+\dfrac{1}{3.5}+...+\dfrac{1}{\left(2n-1\right)\left(2n+1\right)}\\ =\dfrac{1}{2}\left(1-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{5}+....+\dfrac{1}{2n-1}-\dfrac{1}{2n+1}\right)\\ =\dfrac{1}{2}\left(1-\dfrac{1}{2n+1}\right)< \dfrac{1}{2}.1=\dfrac{1}{2}\)
a) Ta có: 3x = 2y; 4x = 2z
⇒ \(\dfrac{x}{2}=\dfrac{y}{3};\dfrac{x}{2}=\dfrac{z}{4}\)
⇒ \(\dfrac{x}{2}=\dfrac{y}{3}=\dfrac{z}{4}\) và x + y + z = 27
Áp dụng tính chất dãy tỉ số bằng nhau, ta có:
\(\dfrac{x}{2}=\dfrac{y}{3}=\dfrac{z}{4}=\dfrac{x+y+z}{2+3+4}=\dfrac{27}{9}=3\)
⇒ \(\dfrac{x}{2}=3\) ⇒ x = 6
\(\dfrac{y}{3}=3\) ⇒ y = 9
\(\dfrac{z}{4}=3\) ⇒ z = 12
Vậy x = 6 ; y = 9 ; z = 12
b) Ta có: \(\dfrac{x}{2}=\dfrac{y}{3}=\dfrac{z}{4}\)
⇒ \(\dfrac{x^2}{4}=\dfrac{y^2}{9}=\dfrac{z^2}{16}\)
⇒ \(\dfrac{2x^2}{8}=\dfrac{3y^2}{27}=\dfrac{5z^2}{80}\)
và 2x2 + 3y2 - 5z2 = -405
Áp dụng tính chất dãy tỉ số bằng nhau, ta có:
\(\dfrac{2x^2}{8}=\dfrac{3y^2}{27}=\dfrac{5z^2}{80}\)=\(\dfrac{2x^2+3y^2-5z^2}{8+27-80}=\dfrac{-405}{-45}=9\)
+) \(\dfrac{2x^2}{8}=9\) ⇒ 2x2 = 72 ⇒ x2 = 72 : 2
⇒ x2 = 36 ⇒ x = 6 hoặc x = -6
+) \(\dfrac{3y^2}{27}=9\) ⇒ 3y2 = 243 ⇒ y2 = 243 : 3
⇒ y2 = 81 ⇒ y = 9 hoặc y = -9
+) \(\dfrac{5z^2}{80}=9\) ⇒ 5z2 = 720 ⇒ z2 = 720 : 5
⇒ z2 = 144 ⇒ z = 12 hoặc z = -12
Vậy...................................( bạn tự vậy nhé )
c) Giống câu a ( bạn tự chép lại )
d) Mik ko bt lm
CÂU TRẢ LỜI RẤT HAY BẠN NÀO ĐANG CẦN THÌ THAM KHẢO NHÉ!!!!!!!!
a: \(2^{300}=8^{100}< 9^{100}=3^{200}\)
b: Để E là số nguyên thì a-2+3 chia hết cho a-2
=>\(a-2\in\left\{1;-1;3;-3\right\}\)
hay \(a\in\left\{3;1;5;-1\right\}\)
d: =>3x-5=0 và 3y+0,4=0
=>x=5/3 và y=-0,4/3=-2/15
Bài 3:
Vì x,y,z tỉ lệ với 2;3;4 nên x/2=y/3=z/4
Đặt x/2=y/3=z/4=k
=>x=2k; y=3k; z=4k
\(M=\dfrac{5x+2y+z}{x+4y-3z}=\dfrac{10k+6k+4k}{2k+12k-12k}=10\)
a, \(\left|3x-4\right|+\left|3y+5\right|=0\)
Ta có :
\(\left|3x-4\right|\ge0\forall x;\left|3y+5\right|\ge0\forall x\\ \)
\(\Rightarrow\left|3x-4\right|+\left|3y+5\right|\ge0\forall x\\ \Rightarrow\left\{{}\begin{matrix}3x-4=0\\3y+5=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}3x=4\\3y=-5\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{4}{3}\\y=-\dfrac{5}{3}\end{matrix}\right.\\ Vậy.........\)
b, \(\left|x+\dfrac{19}{5}\right|+\left|y+\dfrac{1890}{1975}\right|+\left|z-2004\right|=0\)
Ta có :
\(\left|x+\dfrac{19}{5}\right|\ge0\forall x;\left|y+\dfrac{1890}{1975}\right|\ge0\forall y;\left|z-2004\right|\ge0\forall z \)
\(\left|x+\dfrac{19}{5}\right|+\left|y+\dfrac{1890}{1975}\right|+\left|z-2004\right|\ge0\forall x;y;z\\ \Rightarrow\left\{{}\begin{matrix}x+\dfrac{19}{5}=0\\y+\dfrac{1890}{1975}=0\\z-2004=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-\dfrac{19}{5}\\y=-\dfrac{1890}{1975}\\z=2004\end{matrix}\right.\\ Vậy............\)
c, \(\left|x+\dfrac{9}{2}\right|+\left|y+\dfrac{4}{3}\right|+\left|z+\dfrac{7}{2}\right|\le0\)
Ta có : \(\left|x+\dfrac{9}{2}\right|\ge0\forall x;\left|y+\dfrac{4}{3}\right|\ge0\forall y;\left|z+\dfrac{7}{2}\right|\ge0\forall z\)
\(\Rightarrow\left|x+\dfrac{9}{2}\right|+\left|y+\dfrac{4}{3}\right|+\left|z+\dfrac{7}{2}\right|\ge0\forall x;y;z\)
\(\Rightarrow\left|x+\dfrac{9}{2}\right|+\left|y+\dfrac{4}{3}\right|+\left|z+\dfrac{7}{2}\right|\ge0\\ \Rightarrow\left\{{}\begin{matrix}x+\dfrac{9}{2}=0\\y+\dfrac{4}{3}=0\\z+\dfrac{7}{2}=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-\dfrac{9}{2}\\y=-\dfrac{4}{3}\\z=-\dfrac{7}{2}\end{matrix}\right.\\ Vậy............\)
d, \(\left|x+\dfrac{3}{4}\right|+\left|y-\dfrac{1}{5}\right|+\left|x+y+z\right|=0\)
Ta có :
\(\left|x+\dfrac{3}{4}\right|\ge0\forall x;\left|y-\dfrac{1}{5}\right|\ge0\forall y;\left|x+y+z\right|\ge0\forall x;y;z\)
\(\Rightarrow\left|x+\dfrac{3}{4}\right|+\left|y-\dfrac{1}{5}\right|+\left|x+y+z\right|\ge0\forall x;y;z\\ \Rightarrow\left\{{}\begin{matrix}x+\dfrac{3}{4}=0\\y-\dfrac{1}{5}=0\\x+y+z=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-\dfrac{3}{4}\\y=\dfrac{1}{5}\\z=0-\dfrac{1}{5}+\dfrac{3}{4}=\dfrac{11}{20}\end{matrix}\right.\\ Vậy.......\)
e, Câu cuối bn làm tương tự như câu a, b, c nhé!
1.
Đặt \(\dfrac{x}{5}=\dfrac{y}{4}=k\Rightarrow\left\{{}\begin{matrix}x=5k\\y=4k\end{matrix}\right.\)
\(\Rightarrow x^2-y^2=\left(5k\right)^2-\left(4k\right)^2=25k^2-16k^2=9k^2=4\)
\(\Rightarrow k^2=\dfrac{4}{9}\Rightarrow k=\pm\dfrac{2}{3}\)
\(\circledast k=\dfrac{2}{3}\Rightarrow\left\{{}\begin{matrix}x=\dfrac{10}{3}\\y=\dfrac{8}{3}\end{matrix}\right.\)
\(\circledast k=-\dfrac{2}{3}\Rightarrow\left\{{}\begin{matrix}x=-\dfrac{10}{3}\\y=-\dfrac{8}{3}\end{matrix}\right.\)
2.
Áp dụng tính chất của dãy tỉ số bằng nhau, ta có:
\(\dfrac{2x+1}{5}=\dfrac{3y-2}{7}=\dfrac{2x+1+3y-2}{5+7}=\dfrac{2x+3y-1}{12}=\dfrac{2x+3y-1}{6x}\)
\(\Rightarrow6x=12\Rightarrow x=2\)
\(\Rightarrow y=\dfrac{\dfrac{2\cdot2+1}{5}\cdot7+2}{3}=3\)
3.
\(\dfrac{x-1}{2}=\dfrac{y-2}{3}=\dfrac{z-3}{4}\Leftrightarrow\dfrac{2x-2}{4}=\dfrac{3y-6}{9}=\dfrac{z-3}{4}\)
Áp dụng tính chất của dãy tỉ số bằng nhau, ta có:
\(\dfrac{2x-2}{4}=\dfrac{3y-6}{9}=\dfrac{z-3}{4}=\dfrac{2x-2+3y-6-\left(z-3\right)}{4+9-4}=\dfrac{95-8+3}{9}=10\)
\(\Rightarrow\left\{{}\begin{matrix}x=\dfrac{10\cdot4+2}{2}=21\\y=\dfrac{10\cdot9+6}{3}=32\\z=10\cdot4+3=43\end{matrix}\right.\)
a)
\(3(2x-\frac{1}{2})+2(\frac{3}{8}-x)=2,75\)
\(\Leftrightarrow 6x-\frac{3}{2}+\frac{3}{4}-2x=2,75\)
\(\Leftrightarrow 4x=\frac{7}{2}\Rightarrow x=\frac{7}{8}\)
b)
\(x-\frac{1}{3}(5-3x)=1\frac{1}{2}x+5\frac{1}{2}\)
\(\Leftrightarrow x-\frac{5}{3}+x=x+\frac{1}{2}x+\frac{11}{2}\)
\(\Leftrightarrow \frac{1}{2}x=\frac{43}{6}\) \(\Rightarrow x=\frac{43}{3}\)
c) \(\sqrt{x-1}=4\Rightarrow x-1=4^2\Rightarrow x=4^2+1=17\)
d)
\(|x|-5\frac{3}{7}|-x|-\frac{3}{4}=2|x|-1\frac{1}{7}\)
\(\Leftrightarrow |x|-\frac{38}{7}|x|-\frac{3}{4}=2|x|-\frac{8}{7}\)
\(\Leftrightarrow |x|(1-\frac{38}{7}-2)=\frac{3}{4}-\frac{8}{7}\)
\(\Leftrightarrow |x|.\frac{-45}{7}=\frac{-11}{28}\)
\(\Leftrightarrow |x|=\frac{11}{180}\Rightarrow \left[\begin{matrix} x=\frac{11}{180}\\ x=-\frac{11}{180}\end{matrix}\right.\)
\(a,\dfrac{x}{5}=\dfrac{y}{6};\dfrac{y}{8}=\dfrac{x}{7}\) và \(x+y+z=138\)
\(\dfrac{x}{5}=\dfrac{y}{6}\Leftrightarrow\dfrac{x}{20}=\dfrac{y}{24}\) \(\left(1\right)\)
\(\dfrac{y}{8}=\dfrac{z}{7}\Leftrightarrow\dfrac{y}{24}=\dfrac{z}{21}\) \(\left(2\right)\)
Từ \(\left(1\right)\) và \(\left(2\right)\) \(\Leftrightarrow\dfrac{x}{20}=\dfrac{y}{24}=\dfrac{z}{21}\)
Áp dụng tính chất dãy tỉ số bằng nhau, ta có:
\(\dfrac{x}{20}=\dfrac{y}{24}=\dfrac{z}{21}=\dfrac{x+y+z}{20+24+21}=\dfrac{138}{65}\)
\(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{x}{20}=\dfrac{138}{65}\\\dfrac{y}{24}=\dfrac{138}{65}\\\dfrac{z}{21}=\dfrac{138}{65}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{553}{13}\\y=\dfrac{3312}{65}\\z=\dfrac{2898}{65}\end{matrix}\right.\)
Vậy.......
Bài 1:
a. \(\left(3x+7\right)^2=\dfrac{81}{169}.\)
\(\left(3x+7\right)^2=\left(\dfrac{9}{13}\right)^2.\)
\(\Rightarrow3x+7=\dfrac{9}{13}.\)
\(3x=\dfrac{9}{13}-7.\)
\(3x=-\dfrac{28}{91}.\)
\(x=-\dfrac{28}{91}:3.\)
\(x=-\dfrac{28}{273}.\)
Vậy.....
b. \(-128-\left(\dfrac{1}{4}-x\right)=-3.\)
\(\dfrac{1}{4}-x=-128-\left(-3\right).\)
\(\dfrac{1}{4}-x=-125.\)
\(x=\dfrac{1}{4}-\left(-125\right).\)
\(x=\dfrac{1}{4}+125.\)
\(x=\dfrac{501}{4}.\)
Vậy.....
Bài 2: 7x = 3y và x - y = 32.
Giải:
Ta có: 7x = 3y \(\Rightarrow\dfrac{x}{3}=\dfrac{y}{7}_{\left(1\right)}\) và \(x-y=32_{\left(2\right)}.\)
Từ \(_{\left(1\right)}\) và \(_{\left(2\right)}\), kết hợp tính chất dãy tỉ số bằng nhau có:
\(\dfrac{x}{3}=\dfrac{y}{7}=\dfrac{x-y}{3-7}=\dfrac{32}{-4}=-8.\)
Từ đó:
\(\dfrac{x}{3}=-8\Rightarrow x=-8.3=24.\)
\(\dfrac{y}{7}=-8\Rightarrow y=-8.7=56.\)
Vậy.....
2)
Ta có: \(7x=3y\Rightarrow\dfrac{x}{3}=\dfrac{y}{7}\) và \(x-y=32\)
Áp dụng tính chất của dãy tỉ số bằng nhau ta có:
\(\dfrac{x}{3}=\dfrac{y}{7}=\dfrac{x-y}{3-7}=\dfrac{32}{-4}=-8\)
\(\dfrac{x}{3}=-8\Rightarrow x=-8.3=-24\)
\(\dfrac{y}{7}=-8\Rightarrow y=-8.7=-56\)
Vậy \(x=-24\) và \(y=-56\)