Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1:
a) -6x + 3(7 + 2x)
= -6x + 21 + 6x
= (-6x + 6x) + 21
= 21
b) 15y - 5(6x + 3y)
= 15y - 30 - 15y
= (15y - 15y) - 30
= -30
c) x(2x + 1) - x2(x + 2) + (x3 - x + 3)
= 2x2 + x - x3 - 2x2 + x3 - x + 3
= (2x2 - 2x2) + (x - x) + (-x3 + x3) + 3
= 3
d) x(5x - 4)3x2(x - 1) ??? :V
Bài 2:
a) 3x + 2(5 - x) = 0
<=> 3x + 10 - 2x = 0
<=> x + 10 = 0
<=> x = -10
=> x = -10
b) 3x2 - 3x(-2 + x) = 36
<=> 3x2 + 2x - 3x2 = 36
<=> 6x = 36
<=> x = 6
=> x = 5
c) 5x(12x + 7) - 3x(20x - 5) = -100
<=> 60x2 + 35x - 60x2 + 15x = -100
<=> 50x = -100
<=> x = -2
=> x = -2
1/a, f(x) - g(x) + h(x) = x3 - 2x2 + 3x +1 - x3 - x + 1 +2x2 - 1
=(x3 - x3) + (-2x2 + 2x2) + (3x - x) + (1 + 1 - 1)
=2x + 1
b, f(x) - g(x) + h(x) = 0
<=> 2x + 1 = 0
<=> 2x = -1
<=> x = -1/2
Vậy x = -1/2 là nghiệm của đa thức f(x) - g(x) + h(x)
2/ a, 5x + 3(3x + 7)-35 = 0
<=> 5x + 9x + 21 - 35 = 0
<=> 14x - 14 = 0
<=> 14(x - 1) = 0
<=> x-1 = 0
<=> x = 1
Vậy 1 là nghiệm của đa thức 5x + 3(3x + 7) -35
b, x2 + 8x - (x2 + 7x +8) -9 =0
<=> x2 + 8x - x2 - 7x - 8 - 9 =0
<=> (x2 - x2) + (8x - 7x) + (-8 -9)
<=> x - 17 = 0
<=> x =17
Vậy 17 là nghiệm của đa thức x2 + 8x -(x2 + 7x +8) -9
3/ f(x) = g (x) <=> x3 +4x2 - 3x + 2 = x2(x + 4) + x -5
<=> x3 +4x2 - 3x + 2 = x3 + 4x2 + x - 5
<=> -3x + 2 = x - 5
<=> -3x = x - 5 - 2
<=> -3x = x - 7
<=>2x = 7
<=> x = 7/2
Vậy f(x) = g(x) <=> x = 7/2
4/ có k(-2) = m(-2)2 - 2(-2) +4 = 0
=> 4m + 4 + 4 = 0
=> 4m + 8 = 0
=> 4m = -8
=> m = -2
a ) \(\left(x-\frac{1}{4}\right)^4=\frac{1}{256}\)
\(\left(x-\frac{1}{4}\right)=\sqrt[4]{\frac{1}{256}}\)
\(\left(x-\frac{1}{4}\right)=\frac{1}{4}\)
\(x=\frac{1}{4}+\frac{1}{4}\)
\(x=\frac{1}{2}\)
b ) \(\left(3x-2\right)^5=-234\)
\(\left(3x-2\right)=-\sqrt[5]{234}\)
\(\left(3x-2\right)=-2,977441049\)
\(3x=-0,9774410485\)
\(x=-0,3258136828\)
a.
(x-1/4)^4=1/256
(x-1/4)^4=(1/4)^4
x-1/4=1/4
x=1/4+1/4
x=2/4
a) \(a^3+a^2b-a^2c-abc=a^2\left(a+b\right)-ac\left(a+b\right)=a\left(a+b\right)\left(a-c\right)\)
b) mk chỉnh lại đề
\(x^2+2xy+y^2-xz-yz=\left(x+y\right)^2-z\left(x+y\right)=\left(x+y\right)\left(x+y-z\right)\)
c) \(4-x^2-2xy-y^2=4-\left(x+y\right)^2=\left(2-x-y\right)\left(2+x+y\right)\)
d) \(x^2-2xy+y^2-z^2=\left(x-y\right)^2-z^2=\left(x-y-z\right)\left(x-y+z\right)\)
a ) M(x) + N(x) + P(x) = (\(3x^3+x^2+4x^4-x-3x^3+5x^4+x^2-6\)) + (\(-x^2-x^4+4x^3-x^2-5x^3+3x+1+x\)) + (\(1+2x^5-3x^2+x^5+3x^3-x^4-2x\))
= \(3x^3+x^2+4x^4-x-3x^3+5x^4+x^2-6\) \(-x^2-x^4+4x^3-x^2-5x^3+3x+1+x\)\(1+2x^5-3x^2+x^5+3x^3-x^4-2x\)
= ( \(3x^3-3x^3+4x^3-5x^3+3x^3\) ) + ( \(x^2+x^2-x^2-x^2-3x^2\) ) + (\(4x^4+5x^4-x^4-x^4\) ) + ( \(-x+3x+x-2x\) ) + ( \(-6+1+1\) ) + (\(2x^5+x^5\) )
= \(2x^3-3x^2+7x^4+x-4+3x^5\)
Cảm ơn bạn nhiều