Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Ta có: \(\frac{2}{3}x-\frac{1}{2}=\frac{1}{10}\)
\(\Leftrightarrow x\cdot\frac{2}{3}=\frac{1}{10}+\frac{1}{2}=\frac{6}{10}\)
hay \(x=\frac{6}{10}:\frac{2}{3}=\frac{6}{10}\cdot\frac{3}{2}=\frac{18}{20}=\frac{9}{10}\)
Vậy: \(x=\frac{9}{10}\)
b) Ta có: \(5\frac{4}{7}:x=13\)
\(\Leftrightarrow\frac{39}{7}:x=13\)
\(\Leftrightarrow x=\frac{39}{7}:13=\frac{39}{7}\cdot\frac{1}{13}=\frac{3}{7}\)
Vậy: \(x=\frac{3}{7}\)
c) Ta có: \(\left(2\frac{4}{5}x-50\right):\frac{2}{3}=51\)
\(\Leftrightarrow\frac{14}{5}x-50=51\cdot\frac{2}{3}=34\)
\(\Leftrightarrow x\cdot\frac{14}{5}=84\)
\(\Leftrightarrow x=84:\frac{14}{5}=84\cdot\frac{5}{14}=\frac{420}{14}=30\)
Vậy: x=30
d) Ta có: \(\frac{2}{3}+\frac{1}{3}:x=\frac{3}{5}\)
\(\Leftrightarrow\frac{1}{3}:x=\frac{3}{5}-\frac{2}{3}=\frac{-1}{15}\)
hay \(x=\frac{1}{3}:\frac{-1}{15}=\frac{1}{3}\cdot\left(-15\right)=\frac{-15}{3}=-5\)
Vậy: x=-5
e) Ta có: \(8\frac{2}{3}:x-10=-8\)
\(\Leftrightarrow\frac{26}{3}:x=2\)
hay \(x=\frac{26}{3}:2=\frac{26}{3}\cdot\frac{1}{2}=\frac{26}{6}=\frac{13}{3}\)
Vậy: \(x=\frac{13}{3}\)
g) Ta có: \(x+30\%=-1.3\)
\(\Leftrightarrow x+\frac{3}{10}=\frac{-13}{10}\)
hay \(x=\frac{-13}{10}-\frac{3}{10}=\frac{-16}{10}=\frac{-8}{5}\)
Vậy: \(x=\frac{-8}{5}\)
i) Ta có: \(3\frac{1}{3}x+16\frac{3}{4}=-13.25\)
\(\Leftrightarrow x\cdot\frac{10}{3}+\frac{67}{4}=-\frac{53}{4}\)
\(\Leftrightarrow x\cdot\frac{10}{3}=\frac{-53}{4}-\frac{67}{4}=-30\)
\(\Leftrightarrow x=-30:\frac{10}{3}=-30\cdot\frac{3}{10}=\frac{-90}{10}=-9\)
Vậy: x=-9
k) Ta có: \(\left(2\frac{4}{5}x-50\right):\frac{2}{3}=51\)
\(\Leftrightarrow x\cdot\frac{14}{5}-50=51\cdot\frac{2}{3}=34\)
\(\Leftrightarrow x\cdot\frac{14}{5}=34+50=84\)
hay \(x=84:\frac{14}{5}=84\cdot\frac{5}{14}=30\)
Vậy: x=30
m) Ta có: \(\left|2x-1\right|=\left(-4\right)^2\)
\(\Leftrightarrow\left|2x-1\right|=16\)
\(\Leftrightarrow\left[{}\begin{matrix}2x-1=16\\2x-1=-16\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}2x=17\\2x=-15\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\frac{17}{2}\\x=\frac{-15}{2}\end{matrix}\right.\)
Vậy: \(x\in\left\{\frac{17}{2};\frac{-15}{2}\right\}\)
\(B=\left(1+\dfrac{1}{8}\right)\left(1+\dfrac{1}{15}\right)\left(1+\dfrac{1}{24}\right).....\left(1+\dfrac{1}{440}\right)\left(1+\dfrac{1}{483}\right)\)
\(B=\dfrac{9}{8}.\dfrac{16}{15}.\dfrac{25}{24}.....\dfrac{441}{440}.\dfrac{484}{483}\)
\(B=\dfrac{9.16.25.....441.484}{8.15.24.....440.483}\)
\(B=\dfrac{3.3.4.4.5.5.....21.21.22.22}{2.4.3.5.4.6.....20.22.21.23}\)
\(B=\dfrac{3.4.5.....21.22}{2.3.4.....20.21}.\dfrac{3.4.5.....21.22}{4.5.6.....22.23}\)
\(B=11.\dfrac{3}{23}=\dfrac{33}{23}\)
B = \(\dfrac{4}{3}.\dfrac{9}{8}.\dfrac{16}{15}.\dfrac{25}{24}...\dfrac{121}{120}.\dfrac{144}{143}\)
B = \(\dfrac{4.9.16.25...121.144}{3.8.15.24....120.143}\)
B = \(\dfrac{2.2.3.3.4.4.5.5...11.11.12.12}{1.3.2.4.3.5.4.6...10.12.11.13}\)
B = \(\dfrac{2.3.4.5...11.12}{1.2.3.4.5...10.11}.\dfrac{2.3.4.5...11.12}{3.4.5.6.7...12.13}\)
B = 12 . \(\dfrac{2}{13}\)
B = \(\dfrac{24}{13}\)
Lời giải:
a) \((5x-1)^6=729=3^6=(-3)^6\)
\(\Rightarrow \left[\begin{matrix} 5x-1=3\\ 5x-1=-3\end{matrix}\right.\Rightarrow \left[\begin{matrix} x=\frac{4}{5}\\ x=\frac{-2}{5}\end{matrix}\right.\)
b)
\(\frac{8}{25}=\frac{2^x}{5^{x-1}}=\frac{2^x}{5^x:5}=5.(\frac{2}{5})^x\)
\(\Rightarrow \frac{8}{125}=(\frac{2}{5})^x\)
\(\Rightarrow (\frac{2}{5})^3=(\frac{2}{5})^x\Rightarrow x=3\)
c)
\((\frac{1}{16})^x=(\frac{1}{2})^{10}\)
\(\Rightarrow (\frac{1}{2^4})^x=(\frac{1}{2})^{10}\)
\(\Rightarrow (\frac{1}{2})^{4x}=(\frac{1}{2})^{10}\Rightarrow 4x=10\Rightarrow x=\frac{5}{2}\)
d)
\(9^{x}:3^x=3\Rightarrow (\frac{9}{3})^x=3\)
\(\Rightarrow 3^x=3^1\Rightarrow x=1\)
Bài 1:
a, \(\left(x-2\right)^2=9\)
\(\Rightarrow x-2\in\left\{-3;3\right\}\Rightarrow x\in\left\{-1;5\right\}\)
b, \(\left(3x-1\right)^3=-8\)
\(\Rightarrow3x-1=-2\Rightarrow3x=-1\)
\(\Rightarrow x=-\dfrac{1}{3}\)
c, \(\left(x+\dfrac{1}{2}\right)^2=\dfrac{1}{16}\)
\(\Rightarrow x+\dfrac{1}{2}\in\left\{-\dfrac{1}{4};\dfrac{1}{4}\right\}\)
\(\Rightarrow x\in\left\{-\dfrac{3}{4};-\dfrac{1}{4}\right\}\)
d, \(\left(\dfrac{2}{3}\right)^x=\dfrac{4}{9}\)
\(\Rightarrow\left(\dfrac{2}{3}\right)^x=\left(\dfrac{2}{3}\right)^2\)
Vì \(\dfrac{2}{3}\ne\pm1;\dfrac{2}{3}\ne0\) nên \(x=2\)
e, \(\left(\dfrac{1}{2}\right)^{x-1}=\dfrac{1}{16}\)
\(\Rightarrow\left(\dfrac{1}{2}\right)^{x-1}=\left(\dfrac{1}{2}\right)^4\)
Vì \(\dfrac{1}{2}\ne\pm1;\dfrac{1}{2}\ne0\) nên \(x-1=4\Rightarrow x=5\)
f, \(\left(\dfrac{1}{2}\right)^{2x-1}=8\) \(\Rightarrow\left(\dfrac{1}{2}\right)^{2x-1}=\left(\dfrac{1}{2}\right)^{-3}\) Vì \(\dfrac{1}{2}\ne\pm1;\dfrac{1}{2}\ne0\) nên \(2x-1=-3\) \(\Rightarrow2x=-2\Rightarrow x=-1\) Chúc bạn học tốt!!!a/ \(\dfrac{1}{3}+\dfrac{1}{2}:x=4\)
\(\Leftrightarrow\dfrac{1}{3}+\dfrac{1}{2x}=4\)
\(\Leftrightarrow\dfrac{1}{2x}=\dfrac{11}{3}\)
\(\Leftrightarrow22x=3\)
\(\Leftrightarrow x=\dfrac{3}{22}\)
Vậy ...
b/ \(\left(x-1\right)^3=27\)
\(\Leftrightarrow\left(x-1\right)^3=3^3\)
\(\Leftrightarrow x-1=3\)
\(\Leftrightarrow x=4\)
Vậy ...
c/ \(\left(2x+1\right)^2=16\)
\(\Leftrightarrow\left[{}\begin{matrix}\left(2x+1\right)^2=4^2\\\left(2x+1\right)^2=\left(-4\right)^2\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}2x+1=4\\2x+1=-4\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{3}{2}\\x=-\dfrac{5}{2}\end{matrix}\right.\)
Vậy..
d/ \(\dfrac{x+3}{2}=\dfrac{3}{5}\)
\(\Leftrightarrow5\left(x+3\right)=6\)
\(\Leftrightarrow5x+15=6\)
\(\Leftrightarrow x=-\dfrac{9}{5}\)
Vậy..
a) (7x - 11)3 = 25 x 52 + 200
(7x - 11)3 = 800 + 200
(7x - 11)3 = 1000
(7x - 11)3 = 103
=> 7x - 11 = 10
=> 7x = 10 + 11
=> 7x = 21
=> x = 3
b) \(3\frac{1}{3}x+16\frac{3}{4}=-13,25\)
\(3\frac{1}{3}x=-13,25-16\frac{3}{4}\)
\(\frac{10}{3}x=-30\)
\(x=-9\)
a) \(\left(\dfrac{1}{2}x-3\right)\left(-\dfrac{1}{3}+x\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}\dfrac{1}{2}x-3=0\\-\dfrac{1}{3}+x=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}\dfrac{1}{2}x=0+3\\-\dfrac{1}{3}+x=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=3:\dfrac{1}{2}\\x=0-\left(-\dfrac{1}{3}\right)\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=6\\x=\dfrac{1}{3}\end{matrix}\right.\)
d) \(9x^2=1\)
\(\Leftrightarrow x^2=1:9\)
\(\Leftrightarrow x^2=\dfrac{1}{9}\)
\(\Leftrightarrow x^2=\left(\dfrac{1}{3}\right)^2\)
\(\Leftrightarrow x=\dfrac{1}{3}\)
a,
\(\left(x-\dfrac{1}{2}\right)^2=0\\ \Rightarrow x-\dfrac{1}{2}=0\\ \Rightarrow x=\dfrac{1}{2}\)
Vậy \(x=\dfrac{1}{2}\)
b,
\(\left(x-2\right)^2=1\\ \Rightarrow\left[{}\begin{matrix}x-2=1\\x-2=-1\end{matrix}\right.\\ \Rightarrow\left[{}\begin{matrix}x=3\\x=1\end{matrix}\right.\)
Vậy \(x=3\text{ hoặc }x=1\)
c,
\(\left(2x-1\right)^3=-8\\ \Rightarrow2x-1=-2\\ \Rightarrow2x=-1\\ \Rightarrow x=\dfrac{-1}{2}\)
Vậy \(x=\dfrac{-1}{2}\)
d,
\(\left(x+\dfrac{1}{2}\right)^2=\dfrac{1}{16}\\ \Rightarrow\left[{}\begin{matrix}x+\dfrac{1}{2}=\dfrac{1}{4}\\x+\dfrac{1}{2}=\dfrac{-1}{4}\end{matrix}\right.\\ \Rightarrow\left[{}\begin{matrix}x=\dfrac{-1}{4}\\x=\dfrac{-3}{4}\end{matrix}\right.\)
Vậy \(x=\dfrac{-1}{4}\text{ hoặc }x=\dfrac{-3}{4}\)
a) \(\left(x-\dfrac{1}{2}\right)^2=0\Rightarrow\left(x-\dfrac{1}{2}\right)^2=0^2\)
\(\Rightarrow x-\dfrac{1}{2}=0\Rightarrow x=\dfrac{1}{2}\)
Vậy \(x=\dfrac{1}{2}\)
b) \(\left(x-2\right)^2=1\Rightarrow\left(x-2\right)^2=1^2\)
\(\Rightarrow\left[{}\begin{matrix}x-2=-1\\x-2=1\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=-1+2\\x=1+2\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=1\\x=3\end{matrix}\right.\)
Vậy \(\left[{}\begin{matrix}x=1\\x=3\end{matrix}\right.\)
c) \(\left(2x-1\right)^3=-8\Rightarrow\left(2x-1\right)^3=-2^3\)
\(\Rightarrow2x-1=-3\Rightarrow2x=-3+1\)
\(\Rightarrow2x=2\Rightarrow x=1\)
Vậy \(x=1\)
d) \(\left(x+\dfrac{1}{2}\right)^2=\dfrac{1}{16}\Rightarrow\left(x+\dfrac{1}{2}\right)^2=\left(\dfrac{1}{4}\right)^2\)
\(\Rightarrow\left[{}\begin{matrix}x+\dfrac{1}{2}=-\dfrac{1}{4}\\x+\dfrac{1}{2}=\dfrac{1}{4}\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=-\dfrac{1}{4}-\dfrac{1}{2}\\x=\dfrac{1}{4}-\dfrac{1}{2}\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=-\dfrac{3}{4}\\x=-\dfrac{1}{4}\end{matrix}\right.\)
Vậy \(\left[{}\begin{matrix}x=-\dfrac{3}{4}\\x=-\dfrac{1}{4}\end{matrix}\right.\)
a. \(3\dfrac{1}{3}x+16=13,25\)
=> x + 16 = 13,25
=> x = 13,25 - 16
=> x = \(-\dfrac{11}{4}\)
b. x - 43 = (57 - x) - 50
=> 2x = 57 - 50 + 43
=> 2x = 7 + 43
=> 2x = 50
=> x = 50 : 2
=> x = 25
a, \(3\dfrac{1}{3}x\) + 16 = 13,25
\(\dfrac{10}{3}x\) + 16 = 13,25
\(\dfrac{10}{3}x\) = -2,75
x = -2,75 : \(\dfrac{10}{3}\)
x = -\(\dfrac{33}{40}\)
b, x - 43 = ( 57 - x ) - 50
x - 43 = 57 - x - 50
x + x = 57 - 50 + 43
2x = 50
x = 25