Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: =>5x=3x-6
=>2x=-6
hay x=-3
b: \(\Leftrightarrow\left(x-3\right)^2=4\cdot5^2=100\)
=>x-3=10 hoặc x-3=-10
=>x=13 hoặc x=-7
c: \(\left|x^3+1\right|+2\ge2\forall x\)
Dấu '=' xảy ra khi x=-1
đó giúp mk đi mà
à, mk quên chưa nói là ai giúp mk sẽ được luôn 2SP đó
giúp mk nha
cảm ơn nhiều!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
1.Tính hợp lý:
a. 1152 - (374 + 1152) + (374 - 65) = 1152 - 374 - 1152 + 374 - 65 = ( 1152 - 1152 ) + ( -65) + ( 374 - 374 ) = 0 + ( - 65) + 0 = -65
Bài 1 : Tính hợp lý : c. \(\dfrac{11.3^{22}.3^7-9^{15}}{\left(2.3^{14}\right)^2}\) = \(\dfrac{11.3^{29}-3^{30}}{2^2.3^{28}}\) = \(\dfrac{3^{29}.\left(11-3\right)}{2^2.3^{28}}\) = \(\dfrac{3^{29}.2^3}{2^2.3^{28}}\) = 6
3) \(\left(x+\dfrac{1}{5}\right)^2\) + \(\dfrac{17}{25}\) = \(\dfrac{26}{25}\)
=> \(\left(x+\dfrac{1}{5}\right)^2\) = \(\dfrac{26}{25}\) - \(\dfrac{17}{25}\)
=> \(\left(x+\dfrac{1}{5}\right)^2\) = \(\dfrac{9}{25}\)
=> \(\left(x+\dfrac{1}{5}\right)^2\) = \(\dfrac{3}{5}.\dfrac{3}{5}\)
=> \(\left(x+\dfrac{1}{5}\right)^2\) = \(\left(\dfrac{3}{5}\right)^2\)
=> \(x\) + \(\dfrac{1}{5}\) = \(\dfrac{3}{5}\)
=> \(x\) = \(\dfrac{3}{5}\) - \(\dfrac{1}{5}\)
=> \(x\) = \(\dfrac{2}{5}\)
4) -1\(\dfrac{5}{27}\) - \(\left(3x-\dfrac{7}{9}\right)^3\) = \(\dfrac{-24}{27}\)
=> \(\dfrac{-32}{27}\) - \(\left(3x-\dfrac{7}{9}\right)^3\) = \(\dfrac{-8}{9}\)
=> \(\left(3x-\dfrac{7}{9}\right)^3\) = \(\dfrac{-32}{27}\) - \(\dfrac{-8}{9}\)
=> \(\left(3x-\dfrac{7}{9}\right)^3\) = \(\dfrac{-8}{27}\)
=> \(\left(3x-\dfrac{7}{9}\right)^3\) = \(\dfrac{-2}{3}\) . \(\dfrac{-2}{3}\) . \(\dfrac{-2}{3}\)
=> \(\left(3x-\dfrac{7}{9}\right)^3\) = \(\left(\dfrac{-2}{3}\right)^3\)
=> \(3x-\dfrac{7}{9}=\dfrac{-2}{3}\)
=> \(3x=\dfrac{-2}{3}+\dfrac{7}{9}\)
=> \(3x=\dfrac{1}{9}\)
=> \(x=\dfrac{1}{9}:3\)
=> \(x=\dfrac{1}{27}\)
a: \(\dfrac{4^5+4^5+4^5+4^5}{3^5+3^5+3^5+3^5}\cdot\dfrac{6^5+6^5+6^5+6^5+6^5+6^5}{2^5+2^5+2^5+2^5+2^5+2^5}=2^x\)
\(\Leftrightarrow2^x=\dfrac{4^5}{3^5}\cdot\dfrac{6^5}{2^5}=4^5=2^{10}\)
=>x=10
b: \(\left(x-1\right)^{x+4}=\left(x-1\right)^{x+2}\)
\(\Leftrightarrow\left(x-1\right)^{x+2}\left[\left(x-1\right)^2-1\right]=0\)
\(\Leftrightarrow x\left(x-1\right)^{x+2}\cdot\left(x-2\right)=0\)
hay \(x\in\left\{0;1;2\right\}\)
c: \(6\left(6-x\right)^{2003}=\left(6-x\right)^{2003}\)
\(\Leftrightarrow5\cdot\left(6-x\right)^{2003}=0\)
\(\Leftrightarrow6-x=0\)
hay x=6
\(\left(\dfrac{3}{5}\right)^5.x=\left(\dfrac{9}{25}\right)^3.\left(\dfrac{3}{5}\right)^2\)
\(\Rightarrow\left(\dfrac{3}{5}\right)^3.x=\left(\dfrac{9}{25}\right)^3\)
\(\Rightarrow x=\left(\dfrac{3}{5}\right)^3\)
\(\Rightarrow x=\dfrac{27}{125}\)
Bạn sai rồi nhé như thế này mới đúng :
Lời giải :
\(\left(\dfrac{3}{5}\right)^5.x=\left(\dfrac{9}{25}\right)^3.\left(\dfrac{3}{5}\right)^2\)
\(\left(\dfrac{3}{5}\right)^2.\left(\dfrac{3}{5}\right)^3.x=\left(\dfrac{9}{25}\right)^3.\left(\dfrac{3}{5}\right)^2\)
Vì : \(\left(\dfrac{3}{5}\right)^2=\left(\dfrac{3}{5}\right)^2\)
Nên : \(\left(\dfrac{3}{5}\right)^3.x=\left(\dfrac{9}{25}\right)^3\)
\(\Rightarrow x=\left(\dfrac{9}{25}\right)^3:\left(\dfrac{3}{5}\right)^3\)
\(\Rightarrow x=\left(\dfrac{9}{25}:\dfrac{3}{5}\right)^3\)
\(\Rightarrow x=\left(\dfrac{3}{5}\right)^3\)
\(\Rightarrow x=\dfrac{3.3.3}{5.5.5}\)
\(\Rightarrow x=\dfrac{3^3}{5^3}\)
\(\Rightarrow x=\left(3:5\right)^3\)
\(\Rightarrow x=0,6^3\)
\(\Rightarrow x=0,216\)
Vậy \(x=0,216\)
a)
\(x+\left(x-1\right)+\left(x-2\right)+...+\left(x-50\right)=255\\ x+x-1+x-2+...+x-50=255\\ \left(x+x+x+...+x\right)-\left(1+2+3+...+50\right)\\ 51x-1275=255\\ 51x=1530\\ x=30\)
e)
\(x+\left(x+1\right)+\left(x+2\right)+...+\left(x+30\right)=1240\\ x+x+1+x+2+...+x+30=1240\\ \left(x+x+x+...+x\right)+\left(1+2+3+...+30\right)=1240\\ 31x+465=1240\\ 31x=775\\ x=25\)
f)
\(\left(x-1\right)+\left(x-2\right)+...+\left(x-19\right)+\left(x-20\right)=-610\\ x-1+x-2+...+x-19+x-20=-610\\ \left(x+x+x+...+x\right)-\left(1+2+3+...+20\right)=-610\\ 20x-210=-610\\ 20x=-400\\ x=-20\)
Bài 1:
a: =>13x+8=9x+20
=>4x=12
hay x=3
b: \(\Leftrightarrow5x-7=-8-11-3x\)
=>5x-7=-3x-19
=>8x=-12
hay x=-3/2
c: \(\Leftrightarrow\left[{}\begin{matrix}12x-7=5\\12x-7=-5\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=1\\x=\dfrac{1}{6}\end{matrix}\right.\)
e: =>3x+1=-5
=>3x=-6
hay x=-2
`@` `\text {Ans}`
`\downarrow`
`a)`
\(2^{n+3}\cdot5^{n+3}=20^9\div2^9\)
`=>`\(\left(2\cdot5\right)^{n+3}=\left(20\div2\right)^9\)
`=>`\(10^{n+3}=10^9\)
`=>`\(n+3=9\)
`=> n = 9 - 3`
`=> n= 6`
Vậy, `n=6`
`b)`
\(3^{n+5}-3^{n+4}=1458\)
`=> 3^n*3^5 - 3^n*3^4 = 1458`
`=> 3^n*(3^5 - 3^4) = 1458`
`=> 3^n*162 = 1458`
`=> 3^n = 1458 \div 162`
`=> 3^n = 9`
`=> 3^n = 3^2`
`=> n=2`
Vậy, `n=2.`
`c)`
\(5^{n+3}+5^{n+2}=3750\)
`=> 5^n*5^3 + 5^n*5^2 = 3750`
`=> 5^n*(5^3+5^2) = 3750`
`=> 5^n*150 = 3750`
`=> 5^n = 3750 \div 150`
`=> 5^n =25`
`=> 5^n = 5^2`
`=> n=2`
Vậy, `n=2.`
`d)`
\(\dfrac{2}{7}x+\dfrac{3}{14}x=\dfrac{1}{2}\)
`=> 1/2x = 1/2`
`=> x = 1/2 \div 1/2`
`=> x=1`
Vậy, `x=1`
`e)`
\(\dfrac{x+2}{-3}=\dfrac{-2}{x+3}\)
`=> (x+2)(x+3) = -3*(-2)`
`=> (x+2)(x+3) = -6`
`=> x(x+3) + 2(x+3) = -6`
`=> x^2 + 3x + 2x + 6 = -6`
`=> x^2 + 5x + 6 - 6 = 0`
`=> x^2 + 5x = 0`
`=> x(x+5) = 0`
`=>`\(\left[{}\begin{matrix}x=0\\x+5=0\end{matrix}\right.\)
`=>`\(\left[{}\begin{matrix}x=0\\x=-5\end{matrix}\right.\)
Vậy, `x \in {0; -5}`
`@` `\text {Kaizuu lv u}`