Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(\left(4x-1\right)^2-\left(3x+2\right)\left(3x-2\right)=\left(7x-1\right)\left(x+2\right)+\left(2x+1\right)^2-\left(4x^2+7\right)\)(1)
\(\Leftrightarrow\left(16x^2-8x+1\right)-\left(9x^2-4\right)=\left(7x^2+14x-x-2\right)+\left(4x^2+4x+1\right)-\left(4x^2+7\right)\)
\(\Leftrightarrow16x^2-8x+1-9x^2+4=7x^2+13x-2+4x^2+4x+1-4x^2-7\)
\(\Leftrightarrow7x^2-8x+5=7x^2+17x-8\)
\(\Leftrightarrow7x^2-8x-7x^2-17x=-8-5\)
\(\Leftrightarrow-25x=-13\)
\(\Leftrightarrow x=\dfrac{13}{25}\)
Vậy tập nghiệm phương trình (1) là \(S=\left\{\dfrac{13}{25}\right\}\)
a) Ta có: \(-3x^2\left(2x^2-\frac{1}{3}x+2\right)\)
\(=-6x^4+x^3-6x^2\)
b) Ta có: \(2xy^2\left(x-3y+xy\right)\)
\(=2x^2y^2-6xy^3+2x^2y^3\)
c) Ta có: \(\left(5x^2-4x\right)\left(x-2\right)\)
\(=5x^3-10x^2-4x^2+8x\)
\(=5x^3-14x^2+8x\)
d) Ta có: \(-\left(2-x\right)\left(2x+3\right)\)
\(=\left(x-2\right)\left(2x+3\right)\)
\(=2x^2+3x-4x-6\)
\(=2x^2-x-6\)
e) Ta có: \(\left(3x^3-2x^2+x\right):\left(-2x\right)\)
\(=\frac{-3}{2}x^2+x-\frac{1}{2}\)
f) Ta có: \(\left(15x^2y^2-21x^3y+2x^2y\right):\left(3x^2y\right)\)
\(=5y-7x+\frac{2}{3}\)
g)
a: \(\Leftrightarrow\left(3x+2\right)\left(5-x\right)=-9x^2+4\)
\(\Leftrightarrow\left(3x+2\right)\left(5-x\right)+\left(3x+2\right)\left(3x-2\right)=0\)
\(\Leftrightarrow\left(3x+2\right)\left(2x+3\right)=0\)
=>x=-2/3 hoặc x=-3/2
b: \(\Leftrightarrow4x\left(x+5\right)+x^2-25=0\)
\(\Leftrightarrow\left(x+5\right)\left(5x-5\right)=0\)
=>x=-5 hoặc x=1
c: \(\Leftrightarrow3x\left(x-1\right)=\left(x-1\right)^2\)
\(\Leftrightarrow\left(x-1\right)\left(2x+1\right)=0\)
=>x=1 hoặc x=-1/2
a: \(\Leftrightarrow x^2-25-x^2-6x-9+3x^2-12x+12=x^2+2x+1-x^2+16+3x^2\)
\(\Leftrightarrow3x^2-18x-22=3x^2+2x+17\)
=>-18x-22=2x+17
=>-20x=39
hay x=-39/20
b: \(\Leftrightarrow2\left(16x^2-8x+1\right)-9x^2+4=7x^2+13x-2+4x^2+4x+1-4x^2-7\)
\(\Leftrightarrow32x^2-16x+2-9x^2+4=7x^2+17x-8\)
\(\Leftrightarrow23x^2-16x+6-7x^2-17x+8=0\)
\(\Leftrightarrow16x^2-33x+14=0\)
\(\text{Δ}=\left(-33\right)^2-4\cdot16\cdot14=193>0\)
Do đó: Phương trình có hai nghiệm phân biệt là:
\(\left\{{}\begin{matrix}x_1=\dfrac{33-\sqrt{193}}{32}\\x_2=\dfrac{33+\sqrt{193}}{32}\end{matrix}\right.\)