Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\sqrt{1-4x+4x^2}=5\). Bình phương hai vế,ta có:
\(PT\Leftrightarrow1-4x+4x^2=25\)
\(\Leftrightarrow-4x+4x^2=24\Leftrightarrow4\left(-x+x^2\right)=24\)
\(\Leftrightarrow x^2-x=6\Leftrightarrow\orbr{\begin{cases}x=3\\x=-2\end{cases}}\)
đầu tiien, tìm đk của x ở dưới căn, tiếp theo, bình phương 2 vế ,thì vế trái sẽ mất dấu căn thức, còn vế phải thì tự tính. Khi mất dấu căn, bài toán sẽ trở nên bt, tính ra kết quả, đối chiếu đk tìm đc ở trên và kết luận. 4 bài trên , bài nào cx có thể lm như thế !
a/ \(\sqrt{2x-3}=\sqrt{x-1}ĐK:x\ge\dfrac{3}{2}\)
\(\Leftrightarrow2x-3=x-1\Leftrightarrow x=-1+3=2\)(tm)
b/ \(\sqrt{36x-36}-\sqrt{9x-9}-\sqrt{4x-4}=16-\sqrt{x-1}\)ĐK: x≥1
\(\Leftrightarrow6\sqrt{x-1}-3\sqrt{x-1}-2\sqrt{x-1}+\sqrt{x-1}=16\)
\(\Leftrightarrow\sqrt{x-1}\left(6-3-2+1\right)=16\)
\(\Leftrightarrow2\sqrt{x-1}=16\Leftrightarrow\sqrt{x-1}=8\Leftrightarrow x-1=64\Leftrightarrow x=65\)
(tm)
c/ \(\sqrt{2x+3}+\sqrt{2x+2}=1\)ĐK: x>=-1
\(\Leftrightarrow\sqrt{2x+3}=1-\sqrt{2x+2}\)
\(\Leftrightarrow2x+3=2x+2-2\sqrt{2x+2}+1\)
\(\Leftrightarrow2\sqrt{2x+2}=0\Leftrightarrow\sqrt{2x+2}=0\Leftrightarrow2x+2=0\Leftrightarrow x=-1\left(tm\right)\)
d/ \(\sqrt{4x^2+4x+1}=3\)
\(\Leftrightarrow\sqrt{\left(2x+1\right)^2}=3\Leftrightarrow\left|2x+1\right|=3\)
\(\Leftrightarrow\left[{}\begin{matrix}2x+1=3\\2x+1=-3\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=1\\x=-2\end{matrix}\right.\)
Vậy....
k) ĐK: $x^2\geq 5$
PT $\Leftrightarrow 2\sqrt{x^2-5}-\frac{1}{3}\sqrt{x^2-5}+\frac{3}{4}\sqrt{x^2-5}-\frac{5}{12}\sqrt{x^2-5}=4$
$\Leftrightarrow 2\sqrt{x^2-5}=4$
$\Leftrightarrow \sqrt{x^2-5}=2$
$\Rightarrow x^2-5=4$
$\Leftrightarrow x^2=9\Rightarrow x=\pm 3$ (đều thỏa mãn)
l) ĐKXĐ: $x\geq -1$
PT $\Leftrightarrow 2\sqrt{x+1}+3\sqrt{x+1}-\sqrt{x+1}=4$
$\Leftrightarrow 4\sqrt{x+1}=4$
$\Leftrightarrow \sqrt{x+1}=1$
$\Rightarrow x+1=1$
$\Rightarrow x=0$
m)
ĐKXĐ: $x\geq -1$
PT $\Leftrightarrow 4\sqrt{x+1}+2\sqrt{x+1}=16-\sqrt{x+1}+3\sqrt{x+1}$
$\Leftrightarrow 6\sqrt{x+1}=16+2\sqrt{x+1}$
$\Leftrightarrow 4\sqrt{x+1}=16$
$\Leftrightarrow \sqrt{x+1}=4$
$\Rightarrow x=15$ (thỏa mãn)
h)
ĐKXĐ: $x\geq -5$
PT $\Leftrightarrow \sqrt{x+5}=6$
$\Rightarrow x+5=36\Rightarrow x=31$ (thỏa mãn)
i) ĐKXĐ: $x\geq 5$
PT \(\Leftrightarrow \sqrt{x-5}+4\sqrt{x-5}-\sqrt{x-5}=12\)
\(\Leftrightarrow 4\sqrt{x-5}=12\Leftrightarrow \sqrt{x-5}=3\Rightarrow x-5=9\Rightarrow x=14\) (thỏa mãn)
j)
ĐKXĐ: $x\geq 0$
PT $\Leftrightarrow 3\sqrt{2x}+\sqrt{2x}-6\sqrt{2x}+4=0$
$\Leftrightarrow -2\sqrt{2x}+4=0$
$\Leftrightarrow \sqrt{2x}=2$
$\Rightarrow x=2$ (thỏa mãn)
+) Ta có: \(4\sqrt{3x}+\sqrt{12x}=\sqrt{27x}+6\) \(\left(ĐK:x\ge0\right)\)
\(\Leftrightarrow4\sqrt{3x}+2\sqrt{3x}=3\sqrt{3x}+6\)
\(\Leftrightarrow3\sqrt{3x}=6\)
\(\Leftrightarrow\sqrt{3x}=2\)
\(\Leftrightarrow3x=4\)
\(\Leftrightarrow x=\frac{4}{3}\left(TM\right)\)
Vậy \(S=\left\{\frac{4}{3}\right\}\)
+) Ta có:\(\sqrt{x^2-1}-4\sqrt{x-1}=0\) \(\left(ĐK:x\ge1\right)\)
\(\Leftrightarrow\sqrt{x-1}.\sqrt{x+1}-4\sqrt{x-1}=0\)
\(\Leftrightarrow\sqrt{x-1}.\left(\sqrt{x+1}-4\right)=0\)
\(\Leftrightarrow\hept{\begin{cases}\sqrt{x-1}=0\\\sqrt{x+1}-4=0\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x-1=0\\\sqrt{x+1}=4\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x-1=0\\x+1=16\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x=1\left(TM\right)\\x=15\left(TM\right)\end{cases}}\)
Vậy \(S=\left\{1,15\right\}\)
+) Ta có: \(\frac{\sqrt{x}-2}{2\sqrt{x}}< \frac{1}{4}\) \(\left(ĐK:x\ge0\right)\)
\(\Leftrightarrow\frac{\sqrt{x}-2}{2\sqrt{x}}-\frac{1}{4}< 0\)
\(\Leftrightarrow\frac{2.\left(\sqrt{x}-2\right)-\sqrt{x}}{4\sqrt{x}}< 0\)
\(\Leftrightarrow\frac{2\sqrt{x}-4-\sqrt{x}}{4\sqrt{x}}< 0\)
\(\Leftrightarrow\frac{\sqrt{x}-4}{4\sqrt{x}}< 0\)
Để \(\frac{\sqrt{x}-4}{4\sqrt{x}}< 0\)mà \(4\sqrt{x}\ge0\forall x\)
\(\Rightarrow\)\(\sqrt{x}-4< 0\)
\(\Leftrightarrow\)\(\sqrt{x}< 4\)
\(\Leftrightarrow\)\(x< 16\)
Kết hợp ĐKXĐ \(\Rightarrow\)\(0\le x< 16\)
Vậy \(S=\left\{\forall x\inℝ/0\le x< 16\right\}\)
\(4\sqrt{3x}+\sqrt{12x}=\sqrt{27x}+6\) (Đk: x \(\ge\)0)
<=> \(4\sqrt{3x}+2\sqrt{3x}-3\sqrt{3x}=6\)
<=> \(3\sqrt{3x}=6\)
<=> \(\sqrt{3x}=2\)
<=> \(3x=4\)
<=> \(x=\frac{4}{3}\)
\(\sqrt{x^2-1}-4\sqrt{x-1}=0\) (đk: x \(\ge\)1)
<=> \(\sqrt{x-1}.\sqrt{x+1}-4\sqrt{x-1}=0\)
<=> \(\sqrt{x-1}\left(\sqrt{x+1}-4\right)=0\)
<=> \(\orbr{\begin{cases}\sqrt{x-1}=0\\\sqrt{x+1}-4=0\end{cases}}\)
<=> \(\orbr{\begin{cases}x-1=0\\x+1=16\end{cases}}\)
<=> \(\orbr{\begin{cases}x=1\\x=15\end{cases}}\)(tm)
\(\frac{\sqrt{x}-2}{2\sqrt{x}}< \frac{1}{4}\) (Đk: x > 0)
<=> \(\frac{\sqrt{x}-2}{2\sqrt{x}}-\frac{1}{4}< 0\)
<=>\(\frac{2\sqrt{x}-4-\sqrt{x}}{4\sqrt{x}}< 0\)
<=> \(\frac{\sqrt{x}-4}{4\sqrt{x}}< 0\)
Do \(4\sqrt{x}>0\) => \(\sqrt{x}-4< 0\)
<=> \(\sqrt{x}< 4\) <=> \(x< 16\)
Kết hợp với đk => S = {x|0 < x < 16}
1. \(x^3-6x^2+10x-4=0\)
<=> \(\left(x^3-2x^2\right)-\left(4x^2-8x\right)+\left(2x-4\right)=0\)
<=> \(\left(x-2\right)\left(x^2-4x+2\right)=0\)
<=> \(\orbr{\begin{cases}x=2\\x^2-4x+2=0\left(1\right)\end{cases}}\)
Giải pt (1): \(\Delta=\left(-4\right)^2-4.2=8>0\)
=> pt (1) có 2 nghiệm: \(x_1=\frac{4+\sqrt{8}}{2}=2+\sqrt{2}\)
\(x_2=\frac{4-\sqrt{8}}{2}=2-\sqrt{2}\)
1) Ta có: \(x^3-6x^2+10x-4=0\)
\(\Leftrightarrow\left(x^3-2x^2\right)-\left(4x^2-8x\right)+\left(2x-4\right)=0\)
\(\Leftrightarrow x^2\left(x-2\right)-4x\left(x-2\right)+2\left(x-2\right)=0\)
\(\Leftrightarrow\left(x^2-4x+2\right)\left(x-2\right)=0\)
+ \(x-2=0\)\(\Leftrightarrow\)\(x=2\)\(\left(TM\right)\)
+ \(x^2-4x+2=0\)\(\Leftrightarrow\)\(\left(x^2-4x+4\right)-2=0\)
\(\Leftrightarrow\)\(\left(x-2\right)^2=2\)
\(\Leftrightarrow\)\(x-2=\pm\sqrt{2}\)
\(\Leftrightarrow\)\(\orbr{\begin{cases}x=2+\sqrt{2}\approx3,4142\left(TM\right)\\x=2-\sqrt{2}\approx0,5858\left(TM\right)\end{cases}}\)
Vậy \(S=\left\{0,5858;2;3,4142\right\}\)
1,
\(D=\frac{1}{\sqrt{h+2\sqrt{h-1}}}+\frac{1}{\sqrt{h-2\sqrt{h-1}}}\)
\(=\frac{1}{\sqrt{h-1+2\sqrt{h-1}+1}}+\frac{1}{\sqrt{h-1-2\sqrt{h-1}+1}}\)
\(=\frac{1}{\sqrt{h-1}+1}+\frac{1}{\sqrt{h-1}-1}\)
\(=\frac{\sqrt{h-1}-1+\sqrt{h-1}+1}{h-1-1}\)
\(=\frac{2\sqrt{h-1}}{h-2}\)
Thay \(h=3\)vào D ta có:
\(D=\frac{2\sqrt{3-1}}{3-2}=2\sqrt{2}\)
Vậy với \(h=3\)thì \(D=2\sqrt{2}\)
2,
a, \(\sqrt{x-1}+\sqrt{4x-4}-\sqrt{25x-25}+2=0\)(ĐK: \(x\ge1\))
\(\Leftrightarrow\sqrt{x-1}+2\sqrt{x-1}-5\sqrt{x-1}+2=0\)
\(\Leftrightarrow-2\sqrt{x-1}=-2\)
\(\Leftrightarrow\sqrt{x-1}=1\Leftrightarrow x=2\left(TM\right)\)
Vậy PT có nghiệm là \(x=2\)
b, \(\sqrt{9x^2+18}+2\sqrt{x^2+2}-\sqrt{25x^2+50}+3=0\)(ĐK: \(-\sqrt{2}\le x\le\sqrt{2}\))
\(\Leftrightarrow3\sqrt{x^2+2}+2\sqrt{x^2+2}-5\sqrt{x^2+2}=-3\)
\(\Leftrightarrow0=-3\)(vô lí)
Vậy PT đã cho vô nghiệm.
Sửa đề :
a) \(A=\left(\frac{x-\sqrt{x}}{x-\sqrt{x}-2}+\frac{4}{\sqrt{x}-2}\right):\left(\frac{\sqrt{x}+2}{\sqrt{x}+1}-\frac{x-\sqrt{x}-5}{x-\sqrt{x}-2}\right)\)
\(\Leftrightarrow A=\frac{x-\sqrt{x}+4\sqrt{x}+4}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-2\right)}:\frac{x-4-x+\sqrt{x}+5}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-2\right)}\)
\(\Leftrightarrow A=\frac{x+3\sqrt{x}+4}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-2\right)}:\frac{\sqrt{x}+1}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-2\right)}\)
\(\Leftrightarrow A=\frac{x+3\sqrt{x}+4}{\sqrt{x}+1}\)
b) \(A=4\)
\(\Leftrightarrow\frac{x+3\sqrt{x}+4}{\sqrt{x}+1}=4\)
\(\Leftrightarrow x+3\sqrt{x}+4=4\sqrt{x}+4\)
\(\Leftrightarrow x-\sqrt{x}=0\)
\(\Leftrightarrow\sqrt{x}\left(\sqrt{x}-1\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}\sqrt{x}=0\\\sqrt{x}=1\end{cases}\Leftrightarrow}\orbr{\begin{cases}x=0\\x=1\end{cases}}\)
Vậy \(A=4\Leftrightarrow x\in\left\{0;1\right\}\)
ĐK \(-2\ge x\le2\)
Ta có \(9x^2+2\sqrt{x^2-4}=36\)
\(\Leftrightarrow9\left(x^2-4\right)+2\sqrt{x^2-4}=0\)
Đặt \(\sqrt{x^2-4}=t\left(t\ge0\right)\Rightarrow x^2-4=t^2\)ta có
\(9t^2+2t=0\Leftrightarrow t\left(9t+2\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}t=0\\9t+2=0\end{cases}\Leftrightarrow\orbr{\begin{cases}t=0\left(TM\text{Đ}K\right)\\t=-\frac{2}{9}\left(lo\text{ại}\right)\end{cases}}}\)
\(\Leftrightarrow\sqrt{x^2-4}=0\Leftrightarrow x^2-4=0\Leftrightarrow x^2=4\Leftrightarrow x=\pm2\left(TM\text{Đ}K\right)\)