K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 5 2017

\(8x^2-6x-2=0\)

\(\Rightarrow8x^2-8x+2x-2=0\)

\(\Rightarrow8x\left(x-1\right)+2\left(x-1\right)=0\)

\(\Rightarrow\left(8x+2\right)\left(x-1\right)=0\)

\(\Rightarrow\left[{}\begin{matrix}8x+2=0\\x-1=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=\dfrac{-1}{4}\\x=1\end{matrix}\right.\)

Vậy \(x=\dfrac{-1}{4}\) hoặc \(x=1\)

2 tháng 5 2017

x^2 . x  . (8 - 6) - 2 = 0

x^3  . 2 - 2 = 0

x^3 . 2 = 0 + 2

x^3 . 2 = 2

x^3 = 2 : 2

x^3 = 1

x^3 = 1^3

\(\Rightarrow\)x = 1

2 tháng 5 2017

\(8x^2-6x-2=0\)

\(\Leftrightarrow8x^2-8x+2x-2=0\)

\(\Leftrightarrow8x\left(x-1\right)+2\left(x-1\right)=0\)

\(\Leftrightarrow\left(x-1\right)\left(8x+2\right)=0\)

Làm tiếp nha

a,Cách 1 :  \(x^2-10x+9=0\Leftrightarrow\left(x-1\right)\left(x-9\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x=1\\x=9\end{cases}}\)

Cách 2 : Dung p^2 nhẩm nghiệm p^2 bậc 2 vì : 1 - 10 + 9 = 0 

\(\Leftrightarrow\orbr{\begin{cases}x_1=1\\x_2=\frac{c}{a}=9\end{cases}}\)

b, Cách 1 : \(8x^2-2x-15=0\Leftrightarrow\left(4x+5\right)\left(2x-3\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x=-\frac{5}{4}\\x=\frac{3}{2}\end{cases}}\)

Cách 2 : \(\Delta=\left(-2\right)^2-4.8.\left(-15\right)=484>0\)

Pp có 2 nghiệm phân biệt : \(x_1=\frac{-2-\sqrt{484}}{16};x_2=\frac{-2+\sqrt{484}}{16}\)

20 tháng 8 2020

toán 9 à bạn ?

c,\(2x^2+8x-7=0\)

Ta có : \(\Delta=8^2-4.\left(-7\right).2=64+56=120\)

\(\Leftrightarrow\orbr{\begin{cases}x=\frac{-8+\sqrt{120}}{4}=-2+\frac{\sqrt{120}}{4}\\x=\frac{-8-\sqrt{120}}{4}=-2-\frac{\sqrt{120}}{4}\end{cases}}\)

d,\(3x^2-15x+3=0\)

Ta có : \(\Delta=\left(-15\right)^2-4.3.3=225-36=189\)

\(\Leftrightarrow\orbr{\begin{cases}x=\frac{15+\sqrt{189}}{6}\\x=\frac{15-\sqrt{189}}{6}\end{cases}}\)

e,\(16x^2-24x-4=0\Leftrightarrow4x^2-6x-1=0\)

Ta có : \(\Delta=\left(-6\right)^2-4.4.\left(-1\right)=36+16=52\)

\(\Leftrightarrow\orbr{\begin{cases}x=\frac{6+\sqrt{52}}{8}\\x=\frac{6-\sqrt{52}}{8}\end{cases}}\)

f, \(-5x^2+6x+3=0\)

Ta có : \(\Delta=6^2-4.3.\left(-5\right)=36+60=96\)

\(\Leftrightarrow\orbr{\begin{cases}x=\frac{-6+\sqrt{96}}{-10}\\x=\frac{-6-\sqrt{96}}{-10}\end{cases}}\)

i, \(6x^2-9x+40=0\)

Ta có : \(\Delta=\left(-9\right)^2-4.6.40=81-960=-879\)

do đen ta < 0 => vô nghiệm 

a)

Cách 1:

Ta có: \(x^2-10x+9=0\)

\(\Leftrightarrow x^2-x-9x+9=0\)

\(\Leftrightarrow x\left(x-1\right)-9\left(x-1\right)=0\)

\(\Leftrightarrow\left(x-1\right)\left(x-9\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x-1=0\\x-9=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=1\\x=9\end{matrix}\right.\)

Vậy: S={1;9}

Cách 2:

Ta có: \(x^2-10x+9=0\)

\(\Leftrightarrow x^2-10x+25-16=0\)

\(\Leftrightarrow\left(x-5\right)^2=16\)

\(\Leftrightarrow\left[{}\begin{matrix}x-5=4\\x-5=-4\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=9\\x=1\end{matrix}\right.\)

Vậy: S={9;1}

b)

Cách 1:

Ta có: \(8x^2-2x-15=0\)

\(\Leftrightarrow8x^2-12x+10x-15=0\)

\(\Leftrightarrow4x\left(2x-3\right)+5\left(2x-3\right)=0\)

\(\Leftrightarrow\left(2x-3\right)\left(4x+5\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}2x-3=0\\4x+5=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}2x=3\\4x=-5\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\frac{3}{2}\\x=\frac{-5}{4}\end{matrix}\right.\)

Vậy: \(S=\left\{\frac{3}{2};\frac{-5}{4}\right\}\)

Cách 2:

Ta có: \(8x^2-2x-15=0\)

\(\Leftrightarrow8\left(x^2-\frac{1}{4}x-\frac{15}{8}\right)=0\)

\(\Leftrightarrow x^2-\frac{1}{4}x-\frac{15}{8}=0\)

\(\Leftrightarrow x^2-2\cdot x\cdot\frac{1}{8}+\frac{1}{64}-\frac{121}{64}=0\)

\(\Leftrightarrow\left(x-\frac{1}{8}\right)^2=\frac{121}{64}\)

\(\Leftrightarrow\left[{}\begin{matrix}x-\frac{1}{8}=\frac{11}{8}\\x-\frac{1}{8}=-\frac{11}{8}\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\frac{12}{8}=\frac{3}{2}\\x=\frac{-11+1}{8}=\frac{-10}{8}=\frac{-5}{4}\end{matrix}\right.\)

Vậy: \(S=\left\{\frac{3}{2};\frac{-5}{4}\right\}\)

c) Ta có: \(2x^2+8x-7=0\)

\(\Leftrightarrow2\left(x^2+4x-\frac{7}{2}\right)=0\)

\(\Leftrightarrow x^2+4x+4-\frac{15}{2}=0\)

\(\Leftrightarrow\left(x+2\right)^2=\frac{15}{2}\)

\(\Leftrightarrow\left[{}\begin{matrix}x+2=\sqrt{\frac{15}{2}}\\x+2=-\sqrt{\frac{15}{2}}\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\sqrt{\frac{15}{2}}-2\\x=-\sqrt{\frac{15}{2}}-2\end{matrix}\right.\)

Vậy: \(S=\left\{\sqrt{\frac{15}{2}}-2;-\sqrt{\frac{15}{2}}-2\right\}\)

d) Ta có: \(3x^2-15x+3=0\)

\(\Leftrightarrow3\left(x^2-5x+1\right)=0\)

\(\Leftrightarrow x^2-5x+1=0\)

\(\Leftrightarrow x^2-2\cdot x\cdot\frac{5}{2}+\frac{25}{4}-\frac{21}{4}=0\)

\(\Leftrightarrow\left(x-\frac{5}{2}\right)^2=\frac{21}{4}\)

\(\Leftrightarrow\left[{}\begin{matrix}x-\frac{5}{2}=\frac{\sqrt{21}}{2}\\x-\frac{5}{2}=-\frac{\sqrt{21}}{2}\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\frac{\sqrt{21}+5}{2}\\x=\frac{-\sqrt{21}+5}{2}\end{matrix}\right.\)

Vậy: \(S=\left\{\frac{\sqrt{21}+5}{2};\frac{-\sqrt{21}+5}{2}\right\}\)

e) Ta có: \(16x^2-24x-4=0\)

\(\Leftrightarrow4\left(4x^2-6x-1\right)=0\)

\(\Leftrightarrow4x^2-6x-1=0\)

\(\Leftrightarrow\left(2x\right)^2-2\cdot2x\cdot\frac{3}{2}+\frac{9}{4}-\frac{13}{4}=0\)

\(\Leftrightarrow\left(2x-\frac{3}{2}\right)^2=\frac{13}{4}\)

\(\Leftrightarrow\left[{}\begin{matrix}2x-\frac{3}{2}=\frac{\sqrt{13}}{2}\\2x-\frac{3}{2}=-\frac{\sqrt{13}}{2}\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}2x=\frac{3+\sqrt{13}}{2}\\2x=\frac{3-\sqrt{13}}{2}\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=\frac{3+\sqrt{13}}{2}:2=\frac{3+\sqrt{13}}{4}\\x=\frac{3-\sqrt{13}}{2}:2=\frac{3-\sqrt{13}}{4}\end{matrix}\right.\)

Vậy: \(S=\left\{\frac{3+\sqrt{13}}{4};\frac{3-\sqrt{13}}{4}\right\}\)

f) Ta có: \(-5x^2+6x+3=0\)

\(\Leftrightarrow-5\left(x^2-\frac{6}{5}x-\frac{3}{5}\right)=0\)

\(\Leftrightarrow x^2-\frac{6}{5}x-\frac{3}{5}=0\)

\(\Leftrightarrow x^2-2\cdot x\cdot\frac{3}{5}+\frac{9}{25}-\frac{24}{25}=0\)

\(\Leftrightarrow\left(x-\frac{3}{5}\right)^2=\frac{24}{25}\)

\(\Leftrightarrow\left[{}\begin{matrix}x-\frac{3}{5}=\frac{2\sqrt{6}}{5}\\x-\frac{3}{5}=\frac{-2\sqrt{6}}{5}\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\frac{3+2\sqrt{6}}{5}\\x=\frac{3-2\sqrt{6}}{5}\end{matrix}\right.\)

Vậy: \(S=\left\{\frac{3+2\sqrt{6}}{5};\frac{3-2\sqrt{6}}{5}\right\}\)

i) Ta có: \(6x^2-9x+40=0\)

\(\Leftrightarrow6\left(x^2-\frac{3}{2}x+\frac{20}{3}\right)=0\)

\(\Leftrightarrow x^2-\frac{3}{2}x+\frac{20}{3}=0\)

\(\Leftrightarrow x^2-2\cdot x\cdot\frac{3}{4}+\frac{9}{16}+\frac{293}{48}=0\)

\(\Leftrightarrow\left(x-\frac{3}{4}\right)^2+\frac{293}{48}=0\)(vô lý)

Vậy: \(S=\varnothing\)

13 tháng 8 2015

a) A = 4x^2 + 7x + 13 

      = 2x^2 + 2.2x. 7/4 + 49/16 + 159/16

      = (2x + 7/4 )^2 + 159/16 

Vạy GTNN của A là 159/16 khi 2x + 7/4 = 0 => 2x = -7/4 => x= -7/8

b) B  = 5 - 8x + x^2

      = x^2 - 8x + 16 - 11

        = ( x - 4 )^2 - 11 

Vậy GTNN  là 11 khi x - 4 = 0 => x= 4 

1 tháng 5 2018

a) P(x)=8x6-4x2+5x5-12x+7x2-2x5

           =8x6+(-4x2+7x2)+(5x5-2x5)-12x

           =8x6+3x2+3x5-12x

b) P(x)=8x6+3x2+3x5-12x

           =8x6+3x5+3x2-12x

P(x)-Q(x)=(8x6+3x5+3x2-12x)-(2x5-6x2+8x-2x6)

               =8x6+3x5+3x2-12x-2x5+6x2-8x+2x6

               =(8x6+2x6)+(3x5-2x5)+(3x2+6x2)+(-12x-8x)

               =10x6+x5+9x2-20x

R(x)-Q(x)=4x6-8x2

R(x)        =(4x6-8x2)+Q(x)

R(x)               =(4x6-8x2)+(2x5-6x2+8x-2x6)

R(x)               =4x6-8x2+2x5-6x2+8x-2x6

R(x)               =(4x6-2x6)+(-8x2-6x2)+2x5+8x

R(x)                      =2x6-14x2+2x5+8x

8 tháng 4 2017

Câu 2 : x^2+4x-5=x^2-1+4x-4= (x-1)(x+1)+4(x-1)= (x-1)(x+5)=0 nên suy ra x=1 hoặc -5

29 tháng 7 2019

toan lop 8 nha minh kik nham

15 tháng 7 2016

a)\(x^2+6x+5=0\)

=>\(x^2+x+5x+5=0\)

=>\(x\left(x+1\right)+5\left(x+1\right)=0\)

=>\(\left(x+1\right)\left(x+5\right)=0\)

\(\Rightarrow\orbr{\begin{cases}x+1=0\\x+5=0\end{cases}\Rightarrow\orbr{\begin{cases}x=-1\\x=-5\end{cases}}}\)

Vậy x=-1 hoặc x=-5

b)\(2x^2+6x+4=0\)

=>\(2x^2+2x+4x+4=0\)

=>\(2x\left(x+1\right)+4\left(x+1\right)=0\)

=>\(\left(x+1\right)\left(2x+4\right)=0\)

=>\(\left(x+1\right)2\left(x+2\right)=0\)

\(\Rightarrow\orbr{\begin{cases}x+1=0\\x+2=0\end{cases}\Rightarrow\orbr{\begin{cases}x=-1\\x=-2\end{cases}}}\)

Vậy x=-1 hoặc x=-2

15 tháng 7 2016

(x^2+6x+9)-4=0

(x+3)^2=4

x+3=2

x=-1